Skip to main content
Log in

A working memory model applied to mathematical word problem solving

  • Published:
Asia Pacific Education Review Aims and scope Submit manuscript

Abstract

The main objective of this study is (a) to explore the relationship among cognitive style (field dependence/independence), working memory, and mathematics anxiety and (b) to examine their effects on students’ mathematics problem solving. A sample of 161 school girls (13–14 years old) were tested on (1) the Witkin’s cognitive style (Group Embedded Figure Test) and (2) Digit Span Backwards Test, with two mathematics exams. Results obtained indicate that the effect of field dependency, working memory, and mathematics anxiety on students' mathematical word problem solving was significant. Moreover, the correlation among working memory capacity, cognitive style, and students’ mathematics anxiety was significant. Overall, these findings could help to provide some practical implications for adapting problem solving skills and effective teaching/learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, J. W., & Hitch, G. J. (1998). Children’s mental arithmetic and working memory. In C. Donlan (Ed.), The development of mathematical skills. Hove: Psychology Press.

  • Alamolhodaei, H. (1996). A study in higher education calculus and studentslearning styles. Ph.D. Thesis, University of Glasgow, Glasgow, UK.

  • Alamolhodaei, H. (2002). Students’ cognitive style and mathematical problem solving. Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, 6(1), 171–182.

    Google Scholar 

  • Alamolhodaei, H., & Ghazvini, H. (2003). Student’s working memory and mathematical problem solving in higher education. Unpublished manuscript, Ferdowsi University of Mashhad, Iran.

  • Al-Naeme, F. F. A. (1989). A study of some psychological factors affecting performance in chemistry and tertiary levels. M.Sc. Thesis, University of Glasgow, Glasgow, UK.

  • Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11, 181–185. doi:10.1111/1467-8721.00196.

    Article  Google Scholar 

  • Ashcraft, M. H., & Faust, M. W. (1994). Mathematics anxiety and mental arithmetic performance: An exploratory investigation. Cognition and Emotion, 8, 97–125. doi:10.1080/02699939408408931.

    Article  Google Scholar 

  • Ashcraft, M. H., & Krik, P. E. (2001). The relationship among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224–237. doi:10.1037/0096-3445.130.2.224.

    Article  Google Scholar 

  • Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.

    Google Scholar 

  • Baddeley, A. D. (1990). Human memory: Theory and practice. Hove, UK: Lawrence Erlbaum Associates Ltd.

    Google Scholar 

  • Baddeley, A. D. (1998). Human memory: Theory and practice. Boston, MA: Allyn & Bacon.

    Google Scholar 

  • Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. A. Bower (Ed.), Recent advances in learning and motivation (Vol. 8, pp. 47–89). New York: Academic Press.

    Google Scholar 

  • Bessant, K. C. (1995). Factors associated with type pf mathematics anxiety in collage students. Journal for Research in Mathematics Education, 26(4), 327–345. doi:10.2307/749478.

    Article  Google Scholar 

  • Betz, N. (1978). Prevalence, distribution, and correlates of math anxiety in college students. Journal of Counseling Psychology, 25(5), 441–448. doi:10.1037/0022-0167.25.5.441.

    Article  Google Scholar 

  • Byers, V., & Erlwanger, S. (1985). Memory in mathematical understanding. Educational Studies in Mathematics, 16, 259–281. doi:10.1007/BF00776733.

    Article  Google Scholar 

  • Case, R. (1974). Structures and strictures, some functional limitations on the course of cognitive growth. Cognitive Psychology, 6, 544–574. doi:10.1016/0010-0285(74)90025-5.

    Article  Google Scholar 

  • Case, R. (1985). Intellectual development: Birth to adulthood. New York: Academic Press.

    Google Scholar 

  • Case, R. (1995). Capacity-based explanations of working memory growth: A brief history and reevaluation. In F. E. Weinert & W. Schneider (Eds.), Memory performance and competencies: Issues in growth and development (pp. 23–44). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Case, R., & Globerson, T. (1974). Field-independence and central computing space. Child Development, 45, 772–778. doi:10.2307/1127844.

    Article  Google Scholar 

  • Clute, P. S. (1984). Mathematics anxiety, instructional method, and achievement in a survey course in collage mathematics. Journal for Research in Mathematics Education, 15(1), 50–58. doi:10.2307/748987.

    Article  Google Scholar 

  • Collings, J. N. (1985). Scientific thinking through the development of formal operations: Training in the cognitive restructuring aspect of field-independence. Research in Science & Technological Education, 3, 145–152. doi:10.1080/0263514850030107.

    Article  Google Scholar 

  • Cowan, N. (2005). Working memory capacity. New York and Hove: Psychology Press.

    Google Scholar 

  • Ekbia, A., & Alamolhodaei, H. (2000). A study of the effectiveness of working memory and cognitive style on mathematical performance of (13-year-old) school boys. M.A Thesis, Teacher Training University of Tehran, Iran.

  • Ellis, H. C., & Hunt, R. R. (1993). Fundamentals of cognitive psychology (5th ed.). Chicago: WCB-Brown/Benchmark Publishers.

    Google Scholar 

  • Faust, M. W., Ashcraft, M. H., & Fleck, D. E. (1996). Mathematics anxiety effects in simple and complex addition. Mathematical Cognition, 2, 25–62. doi:10.1080/135467996387534.

    Article  Google Scholar 

  • Ferguson, R. D. (1986). Abstraction anxiety: A factor of mathematics anxiety. Journal for Research in Mathematics Education, 17, 145–150. doi:10.2307/749260.

    Article  Google Scholar 

  • Fernandez, M. L., Hadaway, N., & Wilson, J. W. (1994). Problem solving: Managing it all. The Mathematics Teacher, 87(3), 193–199.

    Google Scholar 

  • Gagne, R. M. (1983). Some issues in the psychology of mathematics instruction. Journal for Research in Mathematics Education, 14(1), 7–18. doi:10.2307/748793.

    Article  Google Scholar 

  • Geary, D. C., Brown, S. C., & Samaranayake, V. A. (1991). Cognitive addition: A short longitudinal study of strategy choice and speed-of-processing difference in normal and mathematically disabled children. Developmental Psychology, 27, 787–797. doi:10.1037/0012-1649.27.5.787.

    Article  Google Scholar 

  • Geary, D. C., & Widaman, K. F. (1992). Numerical cognition: On the convergence of componential and psychometric models. Intelligence, 16, 47–80. doi:10.1016/0160-2896(92)90025-M.

    Article  Google Scholar 

  • Hambrick, D. Z., & Engle, R. W. (2003). The role of working memory in problem solving. In J. E. Davidson & R. T. Sternberg (Eds.), The psychology of problem solving. New York: Cambridge University Press.

    Google Scholar 

  • Harel, G., & Kaput, K. (1991). The role of conceptional entities and their symbols in building advanced mathematical concepts. In D. Tall (Ed.), Advanced mathematical thinking. Dodrecht: Kluwer Academic Press.

    Google Scholar 

  • Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33–46. doi:10.2307/749455.

    Article  Google Scholar 

  • Jackson, C., & Leffingwell, R. (1999). The role of instructions in creating math anxiety in students from kindergarten through college. Mathematics Teacher, 92(7), 583–587 (ERIC). Document Reproduction Service No. ED, 431, 628.

  • Johnstone, A. H. (1984). New stars for the teacher steer by. Journal of Chemical Education, 61(10), 847–849.

    Article  Google Scholar 

  • Johnstone, A. H., & Al-Naeme, F. F. (1991). Room for scientific thought. International Journal of Science Education, 13(2), 187–192. doi:10.1080/0950069910130205.

    Article  Google Scholar 

  • Johnstone, A. H., & Al-Naeme, F. F. (1995). Filling a curriculum gap in chemistry. International Journal of Science Education, 17(2), 219–232.

    Article  Google Scholar 

  • Johnstone, A. H., & El-Banna, H. (1989). Understanding learning difficulties—A predictive research model. Studies in Higher Education, 14(2), 159–168. doi:10.1080/03075078912331377486.

    Article  Google Scholar 

  • Johnstone, A. H., Hogg, W. R., & Ziane, M. (1993). A working memory model applied to physical problem solving. International Journal of Science Education, 15(6), 663–672. doi:10.1080/0950069930150604.

    Article  Google Scholar 

  • Laborde, C. (1990). Language and mathematics. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ma, X. (1999). A meta-analysis of the relationship between anxiety toward mathematics and achievement in mathematics. Journal for Research in Mathematics Education, 30(5), 520–540. doi:10.2307/749772.

    Article  Google Scholar 

  • Mark, R., & Woodard, T. (2004). The effects of math anxiety on post-secondary developmental students as related to achievement, gender and age. Inquiry, 9(1), 5–11.

    Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97. doi:10.1037/h0043158.

    Article  Google Scholar 

  • Niaz, M. (1988). The information-processing demand of chemistry problems and its relation to Pascual-Leone’s functional, M-capacity. International Journal of Science Education, 10(2), 231–238. doi:10.1080/0950069880100211.

    Article  Google Scholar 

  • Niaz, M. (1996). Reasoning strategies of student in solving chemistry problems as a function of development level, functional M-capacity and disembedding ability. International Journal of Science Education, 18(5), 525–541. doi:10.1080/0950069960180503.

    Article  Google Scholar 

  • Niaz, M., & Logie, R. H. (1993). Working memory, mental capacity, and science education: Towards an understanding of the working memory overloud hypothesis. Oxford Review of Education, 19, 511–525. doi:10.1080/0305498930190407.

    Article  Google Scholar 

  • Nickson, M. (2004). Teaching and learning mathematics, a guide to recent research and its applications (2nd ed.). London, UK: Continuum.

    Google Scholar 

  • Oltman, P. K., Raskin, E., & Witkin, H. A. (1971). A manual for the embedded figures test. Palo Alto, CA: Consulting Psychologists Press, Inc.

    Google Scholar 

  • Orton, A. (1992). Learning mathematics: Issues, theory and classroom practice (2nd ed.). London: Cassell Education Series.

    Google Scholar 

  • Ribaupierre, A., & Hitch, G. J. (1994). The development of working memory. Hove: Lawrence Erlbaum Associates.

    Google Scholar 

  • Richardson, F. C., & Suinn, R. M. (1972). The mathematics anxiety rating scale. Journal of Counseling Psychology, 19, 551–554. doi:10.1037/h0033456.

    Article  Google Scholar 

  • Saracho, O. N. (1998). Editor’s introduction cognitive style research and its relationship to various disciplines. International Journal of Educational Research, 29, 169–172. doi:10.1016/S0883-0355(98)00022-6.

    Article  Google Scholar 

  • Scardamalia, M. (1977). Information processing capacity and the problem of horizontal decalage: A demonstration using combinatorial reasoning tasks. Child Development, 48(1), 28–37.

    Google Scholar 

  • Shafrir, U., & Siegel, L. S. (1994). Subtypes of learning disabilities in adolescents and adults. Journal of Learning Disabilities, 27, 123–134. doi:10.1177/002221949402700207.

    Article  Google Scholar 

  • Siegle, L. S., & Ryan, E. B. (1989). The development of working memory in normally achieving and subtypes of learning disabled children. Child Development, 60, 973–980. doi:10.2307/1131037.

    Article  Google Scholar 

  • Sirvastava, P. (1997). Cognitive style in educational perspective. New Delhi, India: Anmol Publications Pvt. Ltd.

    Google Scholar 

  • Suinn, R. M. (1970). The mathematics anxiety rating scale. Department of Psychology, Colorado State University, Fort Collins, CO.

  • Swanson, H. L. (1994). Short term memory and working memory: Do both contribute to our understanding of academic achievement in children and adults with learning disabilities? Journal of Learning Disabilities, 27, 34–50. doi:10.1177/002221949402700107.

    Article  Google Scholar 

  • Swanson, H. L., Cochran, K. F., & Ewers, C. A. (1990). Can learning disabilities be determined by working memory performance? Journal of Learning Disabilities, 23, 59–67. doi:10.1177/002221949002300113.

    Article  Google Scholar 

  • Takahashi, E. (2000). The role of drawing pictures in the mathematical problem solving. Short Presentations, ICME-9 (9th International Congress on Mathematical Education), Japan (Preprint).

  • Talbi, M. T. (1990): An information processing approach to the investigation of mathematical problem solving at secondary and university levels. Ph.D. Thesis, University of Glasgow, Glasgow, UK.

  • Threadgill-Sowder, J., Sowder, L., Moyer, J. C., & Moyer, M. B. (1985). Cognitive variables and performance on mathematical story problems. Journal of Experimental Education, 54(1), 56–62.

    Google Scholar 

  • Witkin, H. A., & Goodenough, D. R. (1981). Cognitive style: Essence and origins. New York: International Universities Press.

    Google Scholar 

  • Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-dependent and field-independent cognitive styles and their educational implications. Review of Educational Research, 47(1), 1–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Alamolhodaei.

Appendix: Digits backward test (DBT)

Appendix: Digits backward test (DBT)

Directions—Start by saying:

Now I’m going to give another set of number, but this time there’s a complication. When I have finished saying each set of number, I want you write them down in reverse order. For example, if I say “719”, you would write down “917”.

Now, no cheating. Do not write from right to left. You listen carefully, turn the number over in your mind and write from left to right. Have you got that? Then let’s began.

SERIES:

figure b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alamolhodaei, H. A working memory model applied to mathematical word problem solving. Asia Pacific Educ. Rev. 10, 183–192 (2009). https://doi.org/10.1007/s12564-009-9023-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12564-009-9023-2

Keywords

Navigation