Skip to main content
Log in

Accumulation and Depuration Kinetics of Rotavirus in Mussels Experimentally Contaminated

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Bivalve mollusks as filter-feeders concentrate in their digestive tissue microorganisms likely present in the harvesting water, thus becoming risky food especially if consumed raw or poorly cooked. To eliminate bacteria and viruses eventually accumulated, they must undergo a depuration process which efficacy on viruses is on debate. To better clarify the worth of the depuration process on virus elimination from mussels, in this study we investigated rotavirus kinetics of accumulation and depuration in Mytilus galloprovincialis experimentally contaminated. Depuration process was monitored for 9 days and virus residual presence and infectivity were evaluated by real time quantitative polymerase chain reaction, cell culture and electron microscopy at days 1, 2, 3, 5, 7, 9 of depuration. Variables like presence of ozone and of microalgae feeding were also analyzed as possible depuration enhancers. Results showed a two-phase virus removal kinetic with a high decrease in the first 24 h of depuration and 5 days necessary to completely remove rotavirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amoroso, M. G., Salzano, C., Cioffi, B., Napoletano, M., Garofalo, F., Guarino, A., & Fusco, G. (2011). Validation of a real-time PCR assay for fast and sensitive quantification of Brucella spp. in water buffalo milk. Food Control, 22(8), 1466–1470,

    Article  Google Scholar 

  • Araud, E., Di Caprio, E., Yang, Z., Li, X., Lou, F., Hughes, J. H., et al. (2015). High-pressure inactivation of rotaviruses: Role of treatment temperature and strain diversity in virus inactivation. Applied and Environmental Microbiology,81(19), 6669–6678. https://doi.org/10.1128/AEM.01853-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Araud, E., DiCaprio, E., Ma, Y., Lou, F., Gao, Y., Kingsley, D., et al. (2016). Thermal inactivation of enteric viruses and bioaccumulation of enteric foodborne viruses in live oysters (Crassostrea virginica). Applied and Environmental Microbiology,82(7), 2086–2099. https://doi.org/10.1128/AEM.03573-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bongiorno, T., Iacumin, L., Tubaro, F., Marcuzzo, E., Sensidoni, A., & Tulli, F. (2015). Seasonal changes in technological and nutritional quality of Mytilus galloprovincialis from suspended culture in the Gulf of Trieste (North Adriatic Sea). Food Chemistry,173, 355–362. https://doi.org/10.1016/j.foodchem.2014.10.029.

    Article  PubMed  CAS  Google Scholar 

  • Boxman, I. L., Verhoef, L., Vennema, H., Ngui, S. L., Friesema, I. H., Whiteside, C., et al. (2016). International linkage of two food-borne hepatitis A clusters through traceback of mussels, The Netherlands, 2012. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 21(3), 30113. https://doi.org/10.2807/1560-7917.ES.2016.21.3.30113.

    Article  Google Scholar 

  • Butt, A. A., Aldridge, K. E., & Sanders, C. V. (2004). Infections related to the ingestion of seafood. Part I: Viral and bacterial infections. The Lancet: Infectious Diseases, 4(4), 201–212. https://doi.org/10.1016/S1473-3099(04)00969-7.

    Article  Google Scholar 

  • Cho, H. G., Lee, S. G., Lee, M. Y., Hur, E. S., Lee, J. S., Park, P. H., et al. (2016). An outbreak of norovirus infection associated with fermented oyster consumption in South Korea. Epidemiology and Infection,144(13), 2759–2764. https://doi.org/10.1017/S0950268816000170.

    Article  PubMed  CAS  Google Scholar 

  • Costafreda, M. I., Bosch, A., & Pinto, R. M. (2006). Development, evaluation, and standardization of a real-time TaqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Applied and Environmental Microbiology,72(6), 3846–3855.

    Article  CAS  Google Scholar 

  • Croci, L., Ciccozzi, M., De Medici, D., Di Pasquale, S., Fiore, A., Mele, A., et al. (1999). Inactivation of hepatitis A virus in heat-treated mussels. Journal of Applied Microbiology,87(6), 884–888.

    Article  CAS  Google Scholar 

  • De Medici, D., Ciccozzi, M., Fiore, A., Di Pasquale, S., Parlato, A., Ricci-Bitti, P., et al. (2001). Closed-circuit system for the depuration of mussels experimentally contaminated with hepatitis A virus. Journal of Food Protection,64(6), 877–880. https://doi.org/10.4315/0362-028x-64.6.877.

    Article  PubMed  Google Scholar 

  • Fusco, G., Di Bartolo, I., Cioffi, B., Ianiro, G., Palermo, P., Monini, M., et al. (2017). Prevalence of foodborne viruses in mussels in southern Italy. Food and Environmental Virology,9(2), 187–194. https://doi.org/10.1007/s12560-016-9277-x.

    Article  PubMed  Google Scholar 

  • Gentry, J., Vinje, J., & Lipp, E. K. (2009). A rapid and efficient method for quantitation of genogroups I and II norovirus from oysters and application in other complex environmental samples. Journal of Virological Methods,156(1–2), 59–65. https://doi.org/10.1016/j.jviromet.2008.11.001.

    Article  PubMed  CAS  Google Scholar 

  • Hu, L., Crawford, S. E., Czako, R., Cortes-Penfield, N. W., Smith, D. F., Le Pendu, J., et al. (2012). Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature,485(7397), 256–259. https://doi.org/10.1038/nature10996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, P., Xia, M., Tan, M., Zhong, W., Wei, C., Wang, L., et al. (2012). Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. Journal of Virology,86(9), 4833–4843. https://doi.org/10.1128/JVI.05507-11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ianiro, G., Delogu, R., Bonomo, P., Fiore, L., Ruggeri, F. M., & RotaNet-Italy Study Group. (2014). Molecular analysis of group A rotaviruses detected in adults and adolescents with severe acute gastroenteritis in Italy in 2012. Journal of Medical Virology,86(6), 1073–1082. https://doi.org/10.1002/jmv.23871.

    Article  PubMed  Google Scholar 

  • Keller, R., Justino, J. F., & Cassini, S. T. (2013). Assessment of water and seafood microbiology quality in a mangrove region in Vitoria. Brazil. Journal of Water and Health,11(3), 573–580. https://doi.org/10.2166/wh.2013.245.

    Article  PubMed  CAS  Google Scholar 

  • Le Guyader, F. S., Le Saux, J. C., Ambert-Balay, K., Krol, J., Serais, O., Parnaudeau, S., et al. (2008). Aichi virus, norovirus, astrovirus, enterovirus, and rotavirus involved in clinical cases from a French oyster-related gastroenteritis outbreak. Journal of Clinical Microbiology,46(12), 4011–4017. https://doi.org/10.1128/JCM.01044-08.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Guyader, F. S., Atmar, R. L., & Le Pendu, J. (2012). Transmission of viruses through shellfish: When specific ligands come into play. Current Opinion in Virology,2(1), 103–110. https://doi.org/10.1016/j.coviro.2011.10.029.

    Article  PubMed  Google Scholar 

  • Lodder, W. J., & de Roda Husman, A. M. (2005). Presence of noroviruses and other enteric viruses in sewage and surface waters in The Netherlands. Applied and Environmental Microbiology,71(3), 1453–1461.

    Article  CAS  Google Scholar 

  • Love, D. C., Lovelace, G. L., & Sobsey, M. D. (2010). Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) by depuration. International Journal of Food Microbiology,143(3), 211–217. https://doi.org/10.1016/j.ijfoodmicro.2010.08.028.

    Article  PubMed  CAS  Google Scholar 

  • Lunestad, B. T., Maage, A., Roiha, I. S., Myrmel, M., Svanevik, C. S., & Duinker, A. (2016). An outbreak of norovirus infection from shellfish soup due to unforeseen insufficient heating during preparation. Food and Environmental Virology,8(4), 231–234. https://doi.org/10.1007/s12560-016-9245-5.

    Article  PubMed  Google Scholar 

  • Maalouf, H., Zakhour, M., Le Pendu, J., Le Saux, J. C., Atmar, R. L., & Le Guyader, F. S. (2010). Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Applied and Environmental Microbiology,76(16), 5621–5630. https://doi.org/10.1128/AEM.00148-10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mattison, K., Harlow, J., Morton, V., Cook, A., Pollari, F., Bidawid, S., et al. (2010). Enteric viruses in ready-to-eat packaged leafy greens. Emerging Infectious Diseases, 16(11), 1815–1817, discussion 1817. https://doi.org/10.3201/eid1611.100877.

    Article  PubMed  PubMed Central  Google Scholar 

  • McLeod, C., Hay, B., Grant, C., Greening, G., & Day, D. (2009). Inactivation and elimination of human enteric viruses by Pacific oysters. Journal of Applied Microbiology,107(6), 1809–1818. https://doi.org/10.1111/j.1365-2672.2009.04373.x.

    Article  PubMed  CAS  Google Scholar 

  • McLeod, C., Polo, D., Le Saux, J. C., & Le Guyader, F. S. (2017). Depuration and relaying: A review on potential removal of Norovirus from oysters. Comprehensive Reviews in Food Science and Food Safety,16, 692–706.

    Article  CAS  Google Scholar 

  • Mezzanotte, V., Marazzi, F., Bissa, M., Pacchioni, S., Binelli, A., Parolini, M., et al. (2016). Removal of enteric viruses and Escherichia coli from municipal treated effluent by zebra mussels. The Science of the Total Environment,539, 395–400.

    Article  CAS  Google Scholar 

  • Nappier, S. P., Graczyk, T. K., & Schwab, K. J. (2008). Bioaccumulation, retention, and depuration of enteric viruses by Crassostrea virginica and Crassostrea ariakensis oysters. Applied and Environmental Microbiology,74(22), 6825–6831. https://doi.org/10.1128/AEM.01000-08.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliveira, A. R., Sykes, A. V., Hachero-Cruzado, I., Azeiteiro, U. M., & Esteves, E. (2015). A sensory and nutritional comparison of mussels (Mytilus sp.) produced in NW Iberia and in the Armona Offshore Production Area (Algarve, Portugal). Food Chemistry,168, 520–528. https://doi.org/10.1016/j.foodchem.2014.07.082.

    Article  PubMed  CAS  Google Scholar 

  • Parada-Fabian, J. C., Juarez-Garcia, P., Natividad-Bonifacio, I., Vazquez-Salinas, C., & Quinones-Ramirez, E. I. (2016). Identification of enteric viruses in foods from Mexico City. Food and Environmental Virology,8(3), 215–220. https://doi.org/10.1007/s12560-016-9244-6.

    Article  PubMed  Google Scholar 

  • Park, H., Jung, S., Shin, H., Ha, S. D., Park, T. J., Park, J. P., et al. (2019). Localization and persistence of hepatitis A virus in artificially contaminated oysters. International Journal of Food Microbiology,299, 58–63.

    Article  CAS  Google Scholar 

  • Polo, D., Alvarez, C., Longa, A., & Romalde, J. L. (2014a). Effectiveness of depuration for hepatitis A virus removal from mussels (Mytilus galloprovincialis). International Journal of Food Microbiology,180, 24–29. https://doi.org/10.1016/j.ijfoodmicro.2014.04.001.

    Article  PubMed  CAS  Google Scholar 

  • Polo, D., Avarez, C., Vilarino, M. L., Longa, A., & Romalde, J. L. (2014b). Depuration kinetics of hepatitis A virus in clams. Food Microbiology,39, 103–107. https://doi.org/10.1016/j.fm.2013.11.011.

    Article  PubMed  CAS  Google Scholar 

  • Polo, D., Feal, X., Varela, M. F., Monteagudo, A., & Romalde, J. L. (2014c). Depuration kinetics of murine norovirus in shellfish. Food Research International (Ottawa, Ontario),64, 182–187.

    Article  CAS  Google Scholar 

  • Polo, D., Feal, X., & Romalde, J. L. (2015a). Mathematical model for viral depuration kinetics in shellfish: An useful tool to estimate the risk for the consumers. Food Microbiology,49, 220–225. https://doi.org/10.1016/j.fm.2015.02.015.

    Article  PubMed  Google Scholar 

  • Polo, D., Varela, M. F., & Romalde, J. L. (2015b). Detection and quantification of hepatitis A virus and norovirus in Spanish authorized shellfish harvesting areas. International Journal of Food Microbiology,193, 43–50. https://doi.org/10.1016/j.ijfoodmicro.2014.10.007.

    Article  PubMed  Google Scholar 

  • Powell, A., & Scolding, J. W. (2018). Direct application of ozone in aquaculture systems. Reviews in Aquaculture,10(2), 424–438.

    Article  Google Scholar 

  • Prevost, B., Lucas, F. S., Goncalves, A., Richard, F., Moulin, L., & Wurtzer, S. (2015). Large scale survey of enteric viruses in river and waste water underlines the health status of the local population. Environment International,79, 42–50. https://doi.org/10.1016/j.envint.2015.03.004.

    Article  PubMed  CAS  Google Scholar 

  • Purpari, G., Macaluso, G., Di Bella, S., Gucciardi, F., Mira, F., Di Marco, P., et al. (2019). Molecular characterization of human enteric viruses in food, water samples, and surface swabs in Sicily. International Journal of Infectious Diseases: Official Publication of the International Society for Infectious Diseases,80, 66–72.

    Article  CAS  Google Scholar 

  • Quiroz-Santiago, C., Vazquez-Salinas, C., Natividad-Bonifacio, I., Barron-Romero, B. L., & Quinones-Ramirez, E. I. (2014). Rotavirus G2P[4] detection in fresh vegetables and oysters in Mexico City. Journal of Food Protection,77(11), 1953–1959. https://doi.org/10.4315/0362-028X.JFP-13-426.

    Article  PubMed  CAS  Google Scholar 

  • Ramani, S., & Giri, S. (2019). Influence of histo blood group antigen expression on susceptibility to enteric viruses and vaccines. Current Opinion in Infectious Diseases. https://doi.org/10.1097/QCO.0000000000000571.

    Article  PubMed  Google Scholar 

  • Raposo, M. F., de Morais, R. M., & Bernardo de Morais, A. M. (2013). Bioactivity and applications of sulphated polysaccharides from marine microalgae. Marine Drugs,11(1), 233–252. https://doi.org/10.3390/md11010233.

    Article  PubMed  Google Scholar 

  • Richards, G. P., McLeod, C., & Le Guyader, F. S. (2010). Processing strategies to inactivate viruses in shellfish. Food and Environmental Virology,2, 183–193.

    Article  Google Scholar 

  • Romalde, J. L., Rivadulla, E., Varela, M. F., & Barja, J. L. (2018). An overview of 20 years of studies on the prevalence of human enteric viruses in shellfish from Galicia, Spain. Journal of Applied Microbiology,124(4), 943–957. https://doi.org/10.1111/jam.13614.

    Article  PubMed  CAS  Google Scholar 

  • Ruggeri, F. M., & Greenberg, H. B. (1991). Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. Journal of Virology,65(5), 2211–2219.

    Article  CAS  Google Scholar 

  • Souza, D. S., Piazza, R. S., Pilotto, M. R., do Nascimento Mde, A., Moresco, V., Taniguchi, S., & Barardi, C. R. (2013). Virus, protozoa and organic compounds decay in depurated oysters. International Journal of Food Microbiology,167(3), 337–345. https://doi.org/10.1016/j.ijfoodmicro.2013.09.019.

    Article  PubMed  CAS  Google Scholar 

  • Souza, D. S. M., Dominot, A. F. A., Moresco, V., & Barardi, C. R. M. (2018). Presence of enteric viruses, bioaccumulation and stability in Anomalocardia brasiliana clams (Gmelin, 1791). International Journal of Food Microbiology,266, 363–371.

    Article  Google Scholar 

  • Tate, J. E., Patel, M. M., Cortese, M. M., Payne, D. C., Lopman, B. A., Yen, C., et al. (2016). Use of patients with diarrhea who test negative for rotavirus as controls to estimate rotavirus vaccine effectiveness through case–control studies. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America,62(Suppl 2), S106–S114. https://doi.org/10.1093/cid/civ1014.

    Article  Google Scholar 

  • Ueki, Y., Shoji, M., Suto, A., Tanabe, T., Okimura, Y., Kikuchi, Y., et al. (2007). Persistence of caliciviruses in artificially contaminated oysters during depuration. Applied and Environmental Microbiology,73(17), 5698–5701.

    Article  CAS  Google Scholar 

  • Van Trang, N., Vu, H. T., Le, N. T., Huang, P., Jiang, X., & Anh, D. D. (2014). Association between norovirus and rotavirus infection and histo-blood group antigen types in Vietnamese children. Journal of Clinical Microbiology,52(5), 1366–1374. https://doi.org/10.1128/JCM.02927-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yanuhar, U., Nurdiani, R., & Hertika, A. M. S. (2011). Potency of Nannochloropsis oculata as antibacterial, antioxidant and antiviral on humpback grouper infected by Vibrio alginolyticus and viral nervous necrotic. Journal of Food Science and Engineering,1(5), 323–330.

    CAS  Google Scholar 

  • Zeng, S. Q., Halkosalo, A., Salminen, M., Szakal, E. D., Puustinen, L., & Vesikari, T. (2008). One-step quantitative RT-PCR for the detection of rotavirus in acute gastroenteritis. Journal of Virological Methods,153(2), 238–240. https://doi.org/10.1016/j.jviromet.2008.08.004.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X. F., Long, Y., Tan, M., Zhang, T., Huang, Q., Jiang, X., et al. (2016). P[8] and P[4] rotavirus infection associated with secretor phenotypes among children in south China. Scientific Reports,6, 34591. https://doi.org/10.1038/srep34591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Roberta Pellicanò for statistical analysis.

Funding

This work was supported by Grant RC015/IZSME from Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Grazia Amoroso or Giovanna Fusco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoroso, M.G., Langellotti, A.L., Russo, V. et al. Accumulation and Depuration Kinetics of Rotavirus in Mussels Experimentally Contaminated. Food Environ Virol 12, 48–57 (2020). https://doi.org/10.1007/s12560-019-09413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-019-09413-0

Keywords

Navigation