Skip to main content

Advertisement

Log in

Spatial and Temporal Distribution of Norovirus and E. coli in Sydney Rock Oysters Following a Sewage Overflow into an Estuary

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

This paper reports a study of norovirus (NoV) GII distribution and persistence in Sydney rock oysters (SRO) (Saccostrea glomerata) located in an estuary after a pump station sewage overflow. SRO were strategically placed at six sites spanning the length of the estuary from the pump station to the sea. The spatial and temporal distribution of NoV, hepatitis A virus (HAV) and Escherichia coli (E. coli) in oysters was mapped after the contamination event. NoV GI and GII, HAV and E. coli were quantified for up to 48 days in oysters placed at six sites ranging from 0.05 to 8.20 km from the sewage overflow. NoV GII was detected up to 5.29 km downstream and persisted in oysters for 42 days at the site closest to the overflow. NoV GII concentrations decreased significantly over time; a reduction rate of 8.5% per day was observed in oysters (p < 0.001). NoV GII concentrations decreased significantly as a function of distance at a rate of 5.8% per km (p < 0.001) and the decline in E. coli concentration with distance was 20.1% per km (p < 0.001). HAV and NoV GI were not detected. A comparison of NoV GII reduction rates from oysters over time, as observed in this study and other published research, collectively suggest that GII reduction rates from oysters may be broadly similar, regardless of environmental conditions, oyster species and genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anonymous. (2001–2011). OzFoodNet quarterly reports. Communication Disease Intelligence Quarterly Report, 25–35.

  • Anonymous. (2005). ISO/TS 16649-3:2005 Microbiology of food and animal feeding stuffs–Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli–Part 3: Most probable number technique using 5-bromo-4-chloro-3-indolyl-beta-d-glucuronide. Microbiology of food and animal feeding stuffs. Geneva: International Organization of Standardization.

  • Anonymous. (2013). ISO/TS 15216-1:2013 Microbiology of food and animal feed–Horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR–Part 1: Method for quantification. Geneva: International Organization of Standardization

  • Bougeard, M., Le Saux, J. C., Pérenne, N., Baffaut, C., Robin, M., & Pommepuy, M. (2011). Modeling of Escherichia coli fluxes on a catchment and the impact on coastal water and shellfish quality. Journal of American Water Resources Association, 47(2), 350–366.

    Article  Google Scholar 

  • Brake, F. A., Ross, T., Kiermeier, A., Holds, G., & McLeod, C. (2014). A survey of Australian oysters for the presence of human noroviruses. Food Microbiology, 44, 264–270.

    Article  CAS  PubMed  Google Scholar 

  • Bureau of Meteorology Daily rainfall Mullumbimby (1954 - current-b). Australian Government. Retrieved November, 2015, fromhttp://www.bom.gov.au/climate/data.

  • Burkhardt, W., III, Calci, K. R., Watkins, W. D., Rippey, S. R., & Chirtel, S. J. (2000). Inactivation of indicator microorganisms in estuarine waters. Water Research, 34(8), 2207–2214. doi:10.1016/s0043-1354(99)00399-1.

    Article  CAS  Google Scholar 

  • Campos, C. J. A., Kershaw, S., Lee, R. J., Morgan, O. C., & Hargin, K. (2011). Rainfall and river flows are predictors for beta-glucuronidase positive Escherichia coli accumulation in mussels and Pacific oysters from the Dart Estuary (England). Journal Water Health, 9(2), 368–381.

    Article  Google Scholar 

  • Crowther, J., Kay, D., & Wyer, M. D. (2001). Relationships between microbial water quality and environmental conditions in coastal recreational waters: The Fylde Coast, UK. Water Research, 35(17), 4029–4038.

    Article  CAS  PubMed  Google Scholar 

  • da Silva, A. K., Le Saux, J.-C., Parnaudeau, S., Pommepuy, M., Elimelech, M., & Le Guyader, F. S. (2007). Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: Different behaviors of genogroups I and II. Applied and Environmental Microbiology, 73(24), 7891–7897. doi:10.1128/aem.01428-07.

    Article  PubMed  PubMed Central  Google Scholar 

  • Department of Primary Industry Water Freshwater discharge, Durrumbul Gauge, NSW (1954–2014). Department of Primary Industry - Water, NSW, Australia. Retrieved January, 2014, from http://waterinfo.nsw.gov.au/pinneena/cm.shtml.

  • Donovan, T. J., Gallacher, S., Andrews, N. J., Greenwood, M. H., Graham, J., Russell, J. E., et al. (1998). Modification of the standard method used in the United Kingdom for counting Escherichia coli in live bivalve molluscs. Communicable Diseases & Public Health/P.H.L.S., 1(3), 188–196.

    CAS  Google Scholar 

  • Dore, B., Keaveney, S., Flannery, J., & Rajko-Nenow, P. (2010). Management of health risks associated with oysters harvested from a norovirus contaminated area, Ireland, February–March 2010. European Surveillance, 15(19), 19567.

    Google Scholar 

  • Ferguson, A., Eyre, B., & Gay, J. (2004). Nutrient cycling in the sub-tropical Brunswick estuary, Australia. Estuaries, 27(1), 1–17.

    Article  CAS  Google Scholar 

  • Goblick, G. N., Anbarchian, J. M., Woods, J., Burkhardt, W., III, & Calci, K. (2011). Evaluating the dilution of wastewater treatment plant effluent and viral impacts on shellfish growing areas in Mobile Bay, Alabama. Journal of Shellfish Research, 30(3), 979–987.

    Article  Google Scholar 

  • Greening, G. E., & Hewitt, J. (2008). Norovirus detection in shellfish using a rapid, sensitive virus recovery and real-time RT-PCR detection protocol. Food Analytical Methods, 1(2), 109–118. doi:10.1007/s12161-008-9018-3.

    Article  Google Scholar 

  • Greening, G. E., Hewitt, J., Hay, B. E., & Grant, C. M. (2003). Persistence of Norwalk-like viruses over time in Pacific oysters grown in the natural environment. In A. V. García (Ed.), 4th International Conference on Molluscan Shellfish Safety, Santiago de Compostela, Spain, 2003 (Vol. Molluscan Shellfish Safety: Proceedings of the 4th International Conference on Molluscan Shellfish Safety, Santiago de Compostela, Spain, June 4–8, 2002): ICMSS

  • Greening, G. E., & Lewis, G. D. (2007). Safeguarding environmental health and market access for NZ foods objective 2: Virus prevalence in shellfish (p. 45). Porirua, NZ: Institute of Environmental Science and Research.

    Google Scholar 

  • Grodzki, M., Ollivier, J., Le Saux, J. C., Piquet, J. C., Noyer, M., & Le Guyader, F. S. (2012). Impact of Xynthia tempest on viral contamination of shellfish. Applied and Environmental Microbiology, 78(9), 3508–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, A. J., Eisenbart, V. G., Etingue, A. L., Gould, L. H., Lopman, B. A., & Parashar, U. D. (2012). Epidemiology of foodborne norovirus outbreaks, United States, 2001–2008. Emerging Infectious Diseases, 18(10), 1566–1573. doi:10.3201/eid1810.120833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41(4), 1548–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsley, D. H., & Richards, G. P. (2003). Persistence of HAV in oysters. Journal of Food Protection, 66, 331–334.

    Article  PubMed  Google Scholar 

  • Le Guyader, F. S., Haugarreau, L., Miossec, L., Dubois, E., & Pommepuy, M. (2000). Three-year study to assess human enteric viruses in shellfish. Applied and Environmental Microbiology, 66(8), 3241–3248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lees, D. (2000). Viruses and bivalve shellfish. International Journal Food Microbiology, 59(1–2), 81–116. doi:10.1016/s0168-1605(00)00248-8.

    Article  CAS  Google Scholar 

  • Lowther, J. A., Gustar, N. E., Powell, A. L., Hartnell, R. E., & Lees, D. N. (2012). Two-year systematic study to assess norovirus contamination in oysters from commercial harvesting areas in the United Kingdom. Applied and Environmental Microbiology, 78(16), 5812–5817. doi:10.1128/aem.01046-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maalouf, H., Schaeffer, J., Parnaudeau, S., Le Pendu, J., Atmar, R. L., Crawford, S. E., et al. (2011). Strain-dependent norovirus bioaccumulation in oysters. Applied and Environmental Microbiology, 77(10), 3189–3196. doi:10.1128/AEM.03010-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manly Hydraulics Laboratory. (2005). Brunswick area sewerage augmentation project EIS report 1388. Sydney, NSW: NSW Department of Public Works and Services, Manly Hydraulics Laboratory.

    Google Scholar 

  • Nappier, S. P., Graczyk, T. K., & Schwab, K. J. (2008). Bioaccumulation, retention, and depuration of enteric viruses by Crassostrea virginica and Crassostrea ariakensis oysters. Applied and Environmental Microbiology, 74(22), 6825–6831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • New Zealand Food Safety Authority. (2006). Animal products (specifications for Bivalve Molluscan Shellfish) (p. 77). Wellington, NZ: New Zealand Ministry for Primary Industries.

    Google Scholar 

  • Patel, M. M., Hall, A. J., Vinjé, J., & Parashar, U. D. (2009). Noroviruses: A comprehensive review. Journal Clinical Virology, 44(1), 1–8.

    Article  CAS  Google Scholar 

  • R Core Team. (2013). R: A language and environment for statistical computing. (3.0.2 ed.). Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Rajko-Nenow, P., Waters, A., Keaveney, S., Flannery, J., Tuite, G., Coughlan, S., et al. (2013). Norovirus genotypes present in oysters and in effluent from a wastewater treatment plant during the seasonal peak of infections in ireland in 2010. Applied and Environmental Microbiology, 79(8), 2578–2587. doi:10.1186/1743-422X-8-310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards, G. P., Watson, M. A., Fankhauser, R. L., & Monroe, S. S. (2004). Genogroup I and II noroviruses detected in stool samples by real-time reverse transcription-PCR using highly degenerate universal primers. Applied and Environmental Microbiology, 70(12), 7179–7184. doi:10.1128/aem.70.12.7179-7184.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., et al. (2011). Foodborne illness acquired in the United States—Major pathogens. Emerging Infectious Diseases, 17(1), 7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwab, K. J., Neill, F. H., Estes, M. K., Metcalf, T. G., & Atmar, R. L. (1998). Distribution of Norwalk virus within shellfish following bioaccumulation and subsequent depuration by detection using RT-PCR. Journal Food Protection, 61(12), 1674–1680.

    Article  CAS  Google Scholar 

  • Seitz, S. R., Leon, J. S., Schwab, K. J., Lyon, G. M., Dowd, M., McDaniels, M., et al. (2011). Norovirus infectivity in humans and persistence in water. Applied and Environmental Microbiology, 77(19), 6884–6888. doi:10.1128/aem.05806-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U. S. Food and Drug Administration. (2015). National shellfish sanitation program (NSSP) guide for the control of molluscan shellfish. Revision 2015 (p. 464). Silver Springs, MD: U. S. Food and Drug Administration.

    Google Scholar 

  • Walne, P. R. (1979). Culture of bivalve molluscs: 50 years’ experience at Conwy. Farnham, Surrey: Fishing News Books Ltd.

    Google Scholar 

Download references

Acknowledgements

Oysters were collected from the estuary using a NSW Government Industry and Investment Scientific Collection Permit no. P09/001-2.0 as per section 37, Fisheries Management Act 1994. Laboratory analyses were conducted at South Australian Research & Development Institute, South Australia. Kate Hodgson is thanked for performing part of the HAV testing. NSW State Shellfish regulator Anthony Zammit identified the survey site. Geoffrey Lawler, an oyster farmer from NSW kindly helped with provision, installation and sampling of the oysters. Brenda Hay (AquaBio Consultants Ltd. NZ), Peter Rees, Manager Utilities, Infrastructure Services (Byron Shire Council, NSA), Dr. Rod Ratcliffe (SA Pathology) and David Allsop (Manly Hydraulics Laboratory NSW) are thanked for their advice. The authors gratefully acknowledge the funding from NSWFA. Felicity Brake was supported with funding from the Australian Seafood CRC, grant number 2008/741.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine McLeod.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brake, F., Kiermeier, A., Ross, T. et al. Spatial and Temporal Distribution of Norovirus and E. coli in Sydney Rock Oysters Following a Sewage Overflow into an Estuary. Food Environ Virol 10, 7–15 (2018). https://doi.org/10.1007/s12560-017-9313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-017-9313-5

Keywords

Navigation