Skip to main content
Log in

Detection of Autism Spectrum Disorder using fMRI Functional Connectivity with Feature Selection and Deep Learning

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is notoriously difficult to diagnose despite having a high prevalence. Existing studies have shifted toward using neuroimaging data to enhance the clinical applicability and the effectiveness of the diagnostic results. However, the time and financial resources required to scan neuroimages restrict the scale of the datasets and further weaken the generalization ability of the statistical results. Furthermore, multi-site datasets collected by multiple worldwide institutions make it difficult to apply machine learning methods due to their heterogeneity. We propose a deep learning approach combined with the F-score feature selection method for ASD diagnosis using a functional magnetic resonance imaging (fMRI) dataset. The proposed method is evaluated on the worldwide fMRI dataset, known as ABIDE (Autism Brain Imaging Data Exchange). The fMRI functional connectivity features selected using our method can achieve an average accuracy of 64.53% on intra-site datasets and an accuracy of 70.9% on the whole ABIDE dataset. Moreover, based on the selected features, the network topology analysis showed a significant decrease in the path length and the cluster coefficient in ASD, indicating a loss of small-world architecture to a random network. The altered brain network may provide insight into the underlying pathology of ASD, and the functional connectivity features selected by our method may serve as biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage: Clinical. 2018;17:16–23. Publisher: Elsevier.

  2. Maenner MJ, Shaw KA, Baio J. Prevalence of autism spectrum disorder among children aged 8 years–autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill Summ. 2020;69(4):1. Publisher: Centers for Disease Control and Prevention.

  3. Yahata N, Morimoto J, Hashimoto R, Lisi G, Shibata K, Kawakubo Y, Kuwabara H, Kuroda M, Yamada T, Megumi F. A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat Commun. 2016;7(1):1–12. Publisher: Nature Publishing Group.

  4. Mandell DS, Ittenbach RF, Levy SE, Pinto-Martin JA. Disparities in diagnoses received prior to a diagnosis of autism spectrum disorder. J Autism Dev Disord. 2007;37(9):1795–1802. Publisher: Springer.

  5. Sharma SR, Gonda X, Tarazi FI. Autism spectrum disorder: classification, diagnosis and therapy. Pharmacol Ther. 2018;190:91–104. Publisher: Elsevier.

  6. Martin AR, Aleksanderek I, Cohen-Adad J, Tarmohamed Z, Tetreault L, Smith N, Cadotte DW, Crawley A, Ginsberg H, Mikulis DJ. Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. NeuroImage: Clinical. 2016;10:192–238. Publisher: Elsevier.

  7. Eslami T, Mirjalili V, Fong A, Laird AR, Saeed F. ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front Neuroinform. 2019;13:70. Publisher: Frontiers.

  8. Eslami T, Saeed F. Similarity based classification of ADHD using singular value decomposition. In: Proceedings of the 15th ACM International Conference on Computing Frontiers. 2018. p. 19–25.

  9. Goceri E. Diagnosis of Alzheimer’s disease with Sobolev gradient-based optimization and 3D convolutional neural network. Int J Numer Methods Biomed Eng. 2019;35(7):e3225. Publisher: Wiley Online Library.

  10. Peng X, Lin P, Zhang T, Wang J. Extreme learning machine-based classification of ADHD using brain structural MRI data. PloS one. 2013;8(11):e79476. Publisher: Public Library of Science San Francisco, USA.

  11. Sewani H, Kashef R. An autoencoder-based deep learning classifier for efficient diagnosis of autism. Children. 2020;7(10):182. Publisher: Multidisciplinary Digital Publishing Institute.

  12. Subah FZ, Deb K, Dhar PK, Koshiba T. A deep learning approach to predict autism spectrum disorder using multisite resting-state fMRI. Appl Sci. 2021;11(8):3636. Publisher: Multidisciplinary Digital Publishing Institute.

  13. Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, Anderson JS, Assaf M, Bookheimer SY, Dapretto M. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry. 2014;19(6):659–667. Publisher: Nature Publishing Group.

  14. Kunda M, Zhou S, Gong G, Lu H. Improving multi-site autism classification based on site-dependence minimisation and second-order functional connectivity. bioRxiv. 2020. Publisher: Cold Spring Harbor Laboratory.

  15. Liu W, Li M, Yi L. Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework. Autism Res. 2016;9(8):888–898. Publisher: Wiley Online Library.

  16. Sharif H, Khan RA. A novel framework for automatic detection of autism: A study on corpus callosum and intracranial brain volume. 2019. arXiv preprint arXiv:1903.11323.

  17. Masi A, DeMayo MM, Glozier N, Guastella AJ. An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci Bull. 2017;33(2):183–193. Publisher: Springer.

  18. Monk CS, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S, Lord C. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage. 2009;47(2):764–772. Publisher: Elsevier.

  19. Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, O’Boyle JG, Schultz RT, Pearlson GD. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 2010;53(1):247–256. Publisher: Elsevier.

  20. Aghdam MA, Sharifi A, Pedram MM. Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J Digit Imaging. 2018;31(6):895–903. Publisher: Springer.

  21. Parisot S, Ktena SI, Ferrante E, Lee M, Moreno RG, Glocker B, Rueckert D. Spectral graph convolutions for population-based disease prediction. In: International conference on medical image computing and computer-assisted intervention. Springer, 2017. p. 177–185.

  22. Plitt M, Barnes KA, Martin A. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. NeuroImage: Clinical. 2015;7:359–366. Publisher: Elsevier.

  23. Abraham A, Milham MP, Di Martino A, Craddock RC, Samaras D, Thirion B, Varoquaux G. Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example. NeuroImage. 2017;147:736–745. Publisher: Elsevier.

  24. Sherkatghanad Z, Akhondzadeh M, Salari S, Zomorodi-Moghadam M, Abdar M, Acharya UR, Khosrowabadi R, Salari V. Automated detection of autism spectrum disorder using a convolutional neural network. Front Neurosci. 2020;13:1325. Publisher: Frontiers.

  25. Nielsen JA, Zielinski BA, Fletcher PT, Alexander AL, Lange N, Bigler ED, Lainhart JE, Anderson JS. Multisite functional connectivity MRI classification of autism: ABIDE results. Front Hum Neurosci. 2013;7:599. Publisher: Frontiers.

  26. Fredo AJ, Jahedi A, Reiter M, Müller RA. Diagnostic classification of autism using resting-state fMRI data and conditional random forest. Age (years). 2018;12(2):6–41.

    Google Scholar 

  27. Subbaraju V, Suresh MB, Sundaram S, Narasimhan S. Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging: A spatial filtering approach. Med Image Anal. 2017;35:375–389. Publisher: Elsevier.

  28. Brown CJ, Kawahara J, Hamarneh, G. Connectome priors in deep neural networks to predict autism. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE; 2018. p. 110–113.

  29. Guo X, Dominick KC, Minai AA, Li H, Erickson CA, Lu LJ. Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front Neurosci. 2017;11:460. Publisher: Frontiers.

  30. Chen YW, Lin CJ. Combining SVMs with various feature selection strategies. In: Feature extraction. Springer; 2006. p. 315–324.

  31. Liou CY, Cheng WC, Liou JW, Liou DR. Autoencoder for words. Neurocomputing. 2014;139:84–96. Publisher: Elsevier.

  32. Zeng K, Kang J, Ouyang G, Li J, Han J, Wang Y, Sokhadze EM, Casanova MF, Li X. Disrupted brain network in children with autism spectrum disorder. Sci Rep. 2017;7(1):1–12. Publisher: Nature Publishing Group.

  33. Craddock RC, James GA, Holtzheimer III PE, Hu XP, Mayberg HS. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp. 2012;33(8):1914–1928. Publisher: Wiley Online Library.

Download references

Funding

This work was supported by the Tianjin Natural Science Foundation for Distinguished Young Scholars (No. 18JCJQJC46100) and the Tianjin Science and Technology Plan Project (No. 18ZXJMTG00260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Duan.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Feng, F., Han, T. et al. Detection of Autism Spectrum Disorder using fMRI Functional Connectivity with Feature Selection and Deep Learning. Cogn Comput 15, 1106–1117 (2023). https://doi.org/10.1007/s12559-021-09981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-021-09981-z

Keywords

Navigation