Skip to main content
Log in

Performance Evaluation of Human Resources Based on Linguistic Neutrosophic Maclaurin Symmetric Mean Operators

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

For corporates, the performance evaluation of human resources is always a significant strategic activity based on cognitive information. This study aims to develop a novel decision-making method with the computation of cognitive information to make assessments of human resources. First, the cognitive information is described by means of linguistic neutrosophic numbers (LNNs) to capture aspects of indeterminacy and fuzziness. Then, as the Maclaurin symmetric mean (MSM) operators can reflect the interrelations among multiple inputs, several extended MSM operators are proposed to aggregate cognitive information in the linguistic neutrosophic environments. Meanwhile, some important properties of these operators are justified. Thereafter, a linguistic neutrosophic decision-making method based on MSM operators is introduced to address qualitative evaluation problems during cognitive processes. Finally, the validity of our method is revealed by presenting a case study of selecting the best employee in a company. Moreover, the advantages of the proposed method are highlighted by the discussion of the effect of the parameter existing in aggregation operators and the comparison with other methods. The results show that the proposed method is feasible and the study can provide guidelines for the performance evaluation and management of human resources. The utilization of LNNs enriches the expression of cognitive information. Furthermore, the proposed method can be regarded as a potential choice for disposing of cognitive computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Garg A, Vijayaraghavan V, Zhang J, Lam JSL. Robust model design for evaluation of power characteristics of the cleaner energy system. Renew Energ. 2017;112:302–13.

    Article  Google Scholar 

  2. Huang YH, Gao L, Yi Z, Tai K, Kalita P, Prapainainar P, Garg A. An application of evolutionary system identification algorithm in modelling of energy production system. Measurement. 2018;114:122–31.

    Article  Google Scholar 

  3. Luo SZ, Liang WZ, Zhao GY. Hybrid PSO-WDBA method for the site selection of tailings pond. Comput Ind Eng. 2020;106429. https://doi.org/10.1016/j.cie.2020.106429.

  4. Catrini P, Piacentino A, Cardona F, Ciulla G. Exergoeconomic analysis as support in decision-making for the design and operation of multiple chiller systems in air conditioning applications. Energ Convers Manage. 2020;220.

  5. Efe B, Kurt M. A systematic approach for an application of personnel selection in assembly line balancing problem. Int T Oper Res. 2018;25(3):1001–25.

    Article  MathSciNet  Google Scholar 

  6. Polychroniou PV, Giannikos I. A fuzzy multi-criteria decision-making methodology for selection of human resources in a Greek private bank. Career Dev Int. 2009;14(4):372–87.

    Article  Google Scholar 

  7. Wright PM, Mcmahan GC. Exploring human capital: putting ‘human’ back into strategic human resource management. Hum Resource Manag J. 2011;21(2):93–104.

    Article  Google Scholar 

  8. Luo SZ, Xing LN. A hybrid decision making framework for personnel selection using BWM, MABAC and PROMETHEE. Int J Fuzzy Syst. 2019;21(8):2421–34.

    Article  Google Scholar 

  9. Ozdemir Y, Nalbant KG. Personnel selection for promotion using an integrated consistent fuzzy preference relations-fuzzy analytic hierarchy process methodology: a real case study. Asian J Interdiscipl Res. 2020;3(1):219–36.

    Article  Google Scholar 

  10. Morente-Molinera JA, Kou G, Samuylov K, Ureña R, Herrera-Viedma E. Carrying out consensual group decision making processes under social networks using sentiment analysis over comparative expressions. Knowl-Based Syst. 2019;165:335–45.

    Article  Google Scholar 

  11. Luo SZ, Liang WZ, Zhao GY. Likelihood-based hybrid ORESTE method for evaluating the thermal comfort in underground mines. Appl Soft Comput. 2020;87.

  12. Liang WZ, Zhao GY, Wu H, Chen Y. Optimization of mining method in subsea deep gold mines: a case study. T Nonferr Metal Soc. 2019;29(10):2160–9.

    Article  Google Scholar 

  13. Park JH, Gwak MG, Kwun YC. Linguistic harmonic mean operators and their applications to group decision making. Int J Adv Manuf Tech. 2011;57(1–4):411–9.

    Article  Google Scholar 

  14. Dong YC, Li HY. On consistency measures of linguistic preference relations. Eur J Oper Res. 2008;189(2):430–44.

    Article  MathSciNet  Google Scholar 

  15. Wu ZB, Chen YH. The maximizing deviation method for group multiple attribute decision making under linguistic environment. Fuzzy Sets Syst. 2007;158(14):1608–17.

    Article  MathSciNet  Google Scholar 

  16. Ju YB. A new method for multiple criteria group decision making with incomplete weight information under linguistic environment. Appl Math Model. 2014;38(21–22):5256–68.

    Article  MathSciNet  Google Scholar 

  17. Luo SZ, Zhang HY, Wang JQ, Li L. Group decision-making approach for evaluating the sustainability of constructed wetlands with probabilistic linguistic preference relations. J Oper Res Soc. 2019;70(12):2039–2055.

    Article  Google Scholar 

  18. Gao J, Guo F, Ma Z, Huang X, Li X. Multi-criteria group decision-making framework for offshore wind farm site selection based on the intuitionistic linguistic aggregation operators. Energy. 2020;117899. https://doi.org/10.1016/j.energy.2020.117899.

  19. Chen ZC, Liu PH, Pei Z. An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int J Comput Int Sys. 2015;8(4):747–60.

    Article  Google Scholar 

  20. Tang M, Liao H. Managing information measures for hesitant fuzzy linguistic term sets and their applications in designing clustering algorithms. Inform Fusion. 2019;50:30–42.

    Article  Google Scholar 

  21. Zhang XY, Xu ZS, Liao HC. A consensus process for group decision making with probabilistic linguistic preference relations. Inform Sciences. 2017;414:260–75.

    Article  Google Scholar 

  22. Tian ZP, Wang J, Zhang HY, Chen XH, Wang JQ. Simplified neutrosophic linguistic normalized weighted Bonferroni mean operator and its application to multi-criteria decision-making problems. Filomat. 2016;30(12):3339–60.

    Article  Google Scholar 

  23. Fang ZB, Ye J. Multiple attribute group decision-making method based on linguistic neutrosophic numbers. Symmetry. 2017;9(7). https://doi.org/10.3390/sym9070111.

  24. Liang WZ, Zhao GY, Hong CS. Performance assessment of circular economy for phosphorus chemical firms based on VIKOR-QUALIFLEX method. Journal of Cleaner Production. 2018;196:1365–78.

    Article  Google Scholar 

  25. Fan CX, Ye J, Hu KL, Fan E. Bonferroni mean operators of linguistic neutrosophic numbers and their multiple attribute group decision-making methods. Information. 2017;8(3). https://doi.org/10.3390/info8030107.

  26. Liu PD, You XL. Some linguistic neutrosophic Hamy mean operators and their application to multi-attribute group decision making, Plos One. 2018;13(3). https://doi.org/10.1371/journal.pone.0193027.

  27. Liang WZ, Zhao GY, Hong CS. Selecting the optimal mining method with extended multi-objective optimization by ratio analysis plus the full multiplicative form (MULTIMOORA) approach. Neural Comput Appl. 2019;31(10):5871–86.

    Article  Google Scholar 

  28. Fan C, Fan E, Hu K. New form of single valued neutrosophic uncertain linguistic variables aggregation operators for decision-making. Cogn Syst Res. 2018;52:1045–55.

    Article  Google Scholar 

  29. Xu ZS, Yager RR. Power-geometric operators and their use in group decision making. IEEE T Fuzzy Syst. 2010;18(1):94–105.

    Article  Google Scholar 

  30. Yang L, Li B. Multiple-valued picture fuzzy linguistic set based on generalized Heronian mean operators and their applications in multiple attribute decision making. IEEE Access. 2020;8:86272–95.

    Article  Google Scholar 

  31. Qin Y, Qi Q, Scott PJ, Jiang X. An additive manufacturing process selection approach based on fuzzy Archimedean weighted power Bonferroni aggregation operators. Robot Cim-Int Manuf. 2020;64.

  32. Maclaurin C. A second letter to Martin Folkes, Esq; concerning the roots of equations, with demonstration of other rules of algebra. Philos T R Soc A. 1729;36:59–96.

  33. Şahin R, Küçük GD. A novel group decision-making method based on linguistic neutrosophic Maclaurin symmetric mean (Revision IV). Cogn Comput. 2020;12(3):699–717.

    Article  Google Scholar 

  34. Qin JD, Liu XW. An approach to intuitionistic fuzzy multiple attribute decision making based on Maclaurin symmetric mean operators. J Intell Fuzzy Syst. 2014;27(5):2177–90.

    Article  MathSciNet  Google Scholar 

  35. Ju YB, Liu XY, Ju DW. Some new intuitionistic linguistic aggregation operators based on Maclaurin symmetric mean and their applications to multiple attribute group decision making. Soft Comput. 2016;20(11):4521–48.

    Article  Google Scholar 

  36. Liu PD, Qin XY. Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision-making. J Exp Theor Artif In. 2017;29(6):1173–202.

    Article  MathSciNet  Google Scholar 

  37. Yu SM, Zhang HY, Wang JQ. Hesitant fuzzy linguistic Maclaurin symmetric mean operators and their applications to multi-criteria decision-making problem. Int J Intell Syst. 2018;33(5):953–82.

    Article  Google Scholar 

  38. Xu ZS. Deviation measures of linguistic preference relations in group decision making. Omega. 2005;33(3):249–54.

    Article  Google Scholar 

  39. Zhang SF, Liu SY. A GRA-based intuitionistic fuzzy multi-criteria group decision making method for personnel selection. Expert Syst Appl. 2011;38(9):11401–5.

    Article  Google Scholar 

  40. Manoharan TR, Muralidharan C, Deshmukh SG. An integrated fuzzy multi-attribute decision-making model for employees’ performance appraisal. Int J Hum Resour Man. 2011;22(03):722–45.

    Article  Google Scholar 

  41. Liu HC, Qin JT, Mao LX, Zhang ZY. Personnel Selection using interval 2-tuple linguistic VIKOR method. Hum Factors Ergon Manuf Serv Ind. 2015;25(3):370–84.

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 61773120, 71331008 and U1501254). This work is also supported in part by the Innovation Team of Guangdong Provincial Department of Education (2018KCXTD031) and the Hunan Provincial Innovation Foundation For Postgraduate (CX20200585).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-ning Xing.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof 3

(1) According to Theorem 1

, \(LNMS{M}^{(s)}({A}_{1},{A}_{2},...,{A}_{m})=LNMS{M}^{(s)}(A,A,...,A)\)

$$=({l}_{2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{(\frac{T}{2v})}^{s})\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}},{l}_{2v-2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{(1-\frac{I}{2v})}^{s})\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}},{l}_{2v-2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{(1-\frac{F}{2v})}^{s}))\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}})$$
$$\begin{aligned}&=\left({l}_{2v{\left(1-\left(1-{\left(\frac{T}{2v}\right)}^{s}\right)\right)}^\frac{1}{s}},{l}_{2v-2v{\left(1-\left(1-{\left(1-\frac{I}{2v}\right)}^{s}\right)\right)}^\frac{1}{s}},{l}_{2v-2v{\left(1-\left(1-{\left(1-\frac{F}{2v}\right)}^{s}\right)\right)}^\frac{1}{s}}\right)\\&=\left({l}_{T},{l}_{I},{l}_{F}\right)=A\end{aligned}$$

(2) As \(0\le {l}_{T{a}_{i}}\le {l}_{T{b}_{i}}\) \(\Rightarrow\) \(T{a}_{i}\le T{b}_{i}\) \(\Rightarrow\) \(\frac{{\prod }_{j=1}^{s}T{a}_{{i}_{j}}}{{(2v)}^{s}}\le \frac{{\prod }_{j=1}^{s}T{b}_{{i}_{j}}}{{(2v)}^{s}}\) \(\Rightarrow 1-\frac{{\prod }_{j=1}^{s}T{a}_{{i}_{j}}}{{(2v)}^{s}}\ge 1-\frac{{\prod }_{j=1}^{s}T{b}_{{i}_{j}}}{{(2v)}^{s}}\)

$$\Rightarrow {\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-\frac{{\prod }_{j=1}^{s}T{a}_{{i}_{j}}}{{(2v)}^{s}})\ge {\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-\frac{{\prod }_{j=1}^{s}T{b}_{{i}_{j}}}{{(2v)}^{s}})$$
$$\begin{aligned}&\Rightarrow {\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-\frac{{\prod }_{j=1}^{s}T{a}_{{i}_{j}}}{{(2v)}^{s}})\right)}^{\frac{1}{{C}_{m}^{s}}}\\&\ge {\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-\frac{{\prod }_{j=1}^{s}T{b}_{{i}_{j}}}{{(2v)}^{s}})\right)}^{\frac{1}{{C}_{m}^{s}}}\end{aligned}$$
$$\begin{aligned}&\Rightarrow {\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-\frac{{\prod }_{j=1}^{s}T{a}_{{i}_{j}}}{{(2v)}^{s}})\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}\\&\le {\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-\frac{{\prod }_{j=1}^{s}T{b}_{{i}_{j}}}{{(2v)}^{s}})\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}\end{aligned}$$
$$\begin{aligned}&\Rightarrow 2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-\frac{{\prod }_{j=1}^{s}T{a}_{{i}_{j}}}{{(2v)}^{s}})\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}\\&\le 2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-\frac{{\prod }_{j=1}^{s}T{b}_{{i}_{j}}}{{\left(2v\right)}^{s}}\right)\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s},\end{aligned}$$

Then \({l}_{2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-\frac{{\prod }_{j=1}^{s}T{a}_{{i}_{j}}}{{(2v)}^{s}})\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}}\le {l}_{2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-\frac{{\prod }_{j=1}^{s}T{b}_{{i}_{j}}}{{(2v)}^{s}})\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}}\).

Additionally, \({l}_{I{a}_{i}}\ge {l}_{I{b}_{i}}\ge 0\) \(\Rightarrow\) \(I{a}_{i}\ge I{b}_{i}\) \(\Rightarrow\) \(\frac{I{a}_{{i}_{j}}}{2v}\ge \frac{I{b}_{{i}_{j}}}{2v}\) \(\Rightarrow\) \({\prod }_{j=1}^{s}(1-\frac{I{a}_{{i}_{j}}}{2v})\le {\prod }_{j=1}^{s}(1-\frac{I{b}_{{i}_{j}}}{2v})\)

$$\Rightarrow 1-{\prod }_{j=1}^{s}(1-\frac{I{a}_{{i}_{j}}}{2v})\ge 1-{\prod }_{j=1}^{s}(1-\frac{I{b}_{{i}_{j}}}{2v})$$
$$\begin{aligned}&\Rightarrow {\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{\prod }_{j=1}^{s}(1-\frac{I{a}_{{i}_{j}}}{2v}))\right)}^{\frac{1}{{C}_{m}^{s}}}\\&\ge {\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{\prod }_{j=1}^{s}(1-\frac{I{b}_{{i}_{j}}}{2v}))\right)}^{\frac{1}{{C}_{m}^{s}}}\end{aligned}$$
$$\begin{aligned}&\Rightarrow {\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{\prod }_{j=1}^{s}(1-\frac{I{a}_{{i}_{j}}}{2v}))\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}\\&\le {\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{\prod }_{j=1}^{s}(1-\frac{I{b}_{{i}_{j}}}{2v}))\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}\end{aligned}$$
$$\begin{aligned}&\Rightarrow 2v-2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}(1-\frac{I{a}_{{i}_{j}}}{2v}\right))\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}\\&\ge 2v-2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}(1-\frac{I{b}_{{i}_{j}}}{2v}\right))\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s},\end{aligned}$$

then \({l}_{2v-2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{\prod }_{j=1}^{s}(1-\frac{I{a}_{{i}_{j}}}{2v}))\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}}\ge {l}_{2v-2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{\prod }_{j=1}^{s}(1-\frac{I{b}_{{i}_{j}}}{2v}))\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}}\).

Similarly,\({l}_{2v-2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{\prod }_{j=1}^{s}(1-\frac{F{a}_{{i}_{j}}}{2v}))\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}}\ge {l}_{2v-2v{\left(1-{\left({\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{\prod }_{j=1}^{s}(1-\frac{F{b}_{{i}_{j}}}{2v}))\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}}\).

Thus,\(LNMS{M}^{(s)}({A}_{1},{A}_{2},...,{A}_{m})\le LNMS{M}^{(s)}({B}_{1},{B}_{2},...,{B}_{m})\).

Appendix B

Proof 4

(1) Based on Definition 3, \({\sum }_{j=1}^{s}{A}_{{i}_{j}}=({l}_{2v-2v{\prod }_{j=1}^{s}(1-\frac{{T}_{{i}_{j}}}{2v})},{l}_{2v{\prod }_{j=1}^{s}\frac{{I}_{{i}_{j}}}{2v}},{l}_{2v{\prod }_{j=1}^{s}\frac{{F}_{{i}_{j}}}{2v}})\)

$$\Rightarrow {\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}{\left({\sum }_{j=1}^{s}{A}_{{i}_{j}}\right)}^{\frac{1}{{C}_{m}^{s}}}$$
$$\begin{aligned}=({l}&_{2v{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}{\left(1-{\prod }_{j=1}^{s}(1-\frac{{T}_{{i}_{j}}}{2v})\right)}^{\frac{1}{{C}_{m}^{s}}}},{l}\\&_{2v-2v{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}{\left(1-{\prod }_{j=1}^{s}\frac{{I}_{{i}_{j}}}{2v})\right)}^{\frac{1}{{C}_{m}^{s}}}},{l}\\&_{2v-2v{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}{\left(1-{\prod }_{j=1}^{s}\frac{{F}_{{i}_{j}}}{2v})\right)}^{\frac{1}{{C}_{m}^{s}}}})\end{aligned}$$
$${\Rightarrow} \frac{1}{s}({{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}({\sum }_{j=1}^{s}{A}_{{i}_{j}})}^{\frac{1}{{C}_{m}^{s}}})$$
$$\begin{aligned}=&\left({l}_{2v-2v{\left(1-{{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}(1-\frac{{T}_{{i}_{j}}}{2v})\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}},{l}\right.\\&\left._{2v{\left(1-{{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}\frac{{I}_{{i}_{j}}}{2v}\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}},{l}\right.\\&\left._{2v{\left(1-{{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}\frac{{F}_{{i}_{j}}}{2v}\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}}\right),\end{aligned}$$

then \(LNMS{M}^{(s)}({A}_{1},{A}_{2},...,{A}_{m})\)

$$\begin{aligned}=&\left({l}_{2v-2v{\left(1-{{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}(1-\frac{{T}_{{i}_{j}}}{2v})\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}},{l}\right.\\&\left._{2v{\left(1-{{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}\frac{{I}_{{i}_{j}}}{2v}\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}},{l}\right.\\&\left._{2v{\left(1-{{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}\frac{{F}_{{i}_{j}}}{2v}\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}}\right).\end{aligned}$$

(2) As \(0\le {T}_{{i}_{j}}\le 2v\Rightarrow 0\le 1-\frac{{T}_{{i}_{j}}}{2v}\le 1\Rightarrow 0\le 1-{\prod }_{j=1}^{s}(1-\frac{{T}_{{i}_{j}}}{2v})\le 1\)

$$\begin{aligned}&\Rightarrow 0\le 1-{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}(1-{\prod }_{j=1}^{s}(1-\frac{{T}_{{i}_{j}}}{2v}))\\&\le 1\Rightarrow 0\le {{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}(1-\frac{{T}_{{i}_{j}}}{2v})\right)}^{\frac{1}{{C}_{m}^{s}}}\le 1\end{aligned}$$
$$\Rightarrow 0\le {\left(1-{{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}(1-\frac{{T}_{{i}_{j}}}{2v})\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}\le 1,$$

then \(0\le 2v-2v{\left(1-{{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}(1-\frac{{T}_{{i}_{j}}}{2v})\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}\le 2v\); and \(0\le {I}_{{i}_{j}}\le 2v\) \(\Rightarrow\) \(0\le \frac{{I}_{{i}_{j}}}{2v}\le 1\) \(\Rightarrow\) \(0\le 1-{\prod }_{j=1}^{s}\frac{{I}_{{i}_{j}}}{2v}\le 1\) \(\Rightarrow 0\le {{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}\frac{{I}_{{i}_{j}}}{2v}\right)}^{\frac{1}{{C}_{m}^{s}}}\le 1\) \(\Rightarrow\) \(0\le {\left(1-{{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}\frac{{I}_{{i}_{j}}}{2v}\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}\le 1\), then \(0\le 2v{\left(1-{{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}\frac{{I}_{{i}_{j}}}{2v}\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}\le 2v\).

Similarly, \(0\le 2v{\left(1-{{\prod }_{1\le {i}_{1}<\cdots <{i}_{s}\le m}\left(1-{\prod }_{j=1}^{s}\frac{{F}_{{i}_{j}}}{2v}\right)}^{\frac{1}{{C}_{m}^{s}}}\right)}^\frac{1}{s}\le 2v\). Thus, \(LNDMS{M}^{(s)}({A}_{1},{A}_{2},...,{A}_{m})\) is still a LNN.

Combined (1) and (2), Proof 3 now is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Sz., Xing, Ln. & Ren, T. Performance Evaluation of Human Resources Based on Linguistic Neutrosophic Maclaurin Symmetric Mean Operators. Cogn Comput 14, 547–562 (2022). https://doi.org/10.1007/s12559-021-09963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-021-09963-1

Keywords

Navigation