Skip to main content
Log in

Binary Chimp Optimization Algorithm (BChOA): a New Binary Meta-heuristic for Solving Optimization Problems

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Chimp optimization algorithm (ChOA) is a newly proposed meta-heuristic algorithm inspired by chimps’ individual intelligence and sexual motivation in their group hunting. The preferable performance of ChOA has been approved among other well-known meta-heuristic algorithms. However, its continuous nature makes it unsuitable for solving binary problems. Therefore, this paper proposes a novel binary version of ChOA and attempts to prove that the transfer function is the most important part of binary algorithms. Therefore, four S-shaped and V-shaped transfer functions, as well as a novel binary approach, have been utilized to investigate the efficiency of binary ChOAs (BChOA) in terms of convergence speed and local minima avoidance. In this regard, forty-three unimodal, multimodal, and composite optimization functions and ten IEEE CEC06-2019 benchmark functions were utilized to evaluate the efficiency of BChOAs. Furthermore, to validate the performance of BChOAs, four newly proposed binary optimization algorithms were compared with eighteen novel state-of-the-art algorithms. The results indicate that both the novel binary approach and V-shaped transfer functions improve the efficiency of BChOAs in a statistically significant way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Holland JH. Genetic algorithms. Sci Am. 1992;267(1):66–73.

    Article  Google Scholar 

  2. Kennedy J, Eberhart R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks. 1995;4:1942–1948. IEEE. View Article.

  3. Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Pt B Cybern. 1996;26(1):29–41.

    Article  Google Scholar 

  4. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim. 2007;39(3):459–71.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Sci. 1983;220(4598):671–80.

    Article  MathSciNet  MATH  Google Scholar 

  6. Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11(4):341–59.

    Article  MathSciNet  MATH  Google Scholar 

  7. Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci. 2009;179(13):2232–48.

    Article  MATH  Google Scholar 

  8. Kaveh A, Talatahari S. A novel heuristic optimization method: charged system search. Acta Mech. 2010;213(3–4):267–89.

    Article  MATH  Google Scholar 

  9. Khishe M, Mosavi MR. Chimp optimization algorithm Expert Syst Appl. 2020;149:113–338.

    Google Scholar 

  10. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer Adv Eng Softw. 2014;69:46–61.

    Article  Google Scholar 

  11. Simon D. Biogeography-based optimization. IEEE Trans Evol Comput. 2008;12(6):702–13.

    Article  Google Scholar 

  12. Kaveh A, Farhoudi N. A new optimization method: dolphin echolocation. Adv Eng Softw. 2013;59:53–70.

    Article  Google Scholar 

  13. Kaveh M, Mesgari MS, Khosravi A. Solving the local positioning problem using a four-layer artificial neural network. Eng J Geospatial Inf Technol. 2020;7(4):21–40.

    Google Scholar 

  14. Lotfy A, Kaveh M, Mosavi MR, Rahmati AR. An enhanced fuzzy controller based on improved genetic algorithm for speed control of DC motors. Analog Integr Circuits Signal Process. 2020;105:141–55.

    Article  Google Scholar 

  15. Khishe M, Mosavi MR, Kaveh M. Improved migration models of biogeography-based optimization for sonar dataset classification by using neural network. Appl Acoust. 2017;118:15–29.

    Article  Google Scholar 

  16. Kaveh M, Khishe M, Mosavi MR. Design and implementation of a neighborhood search biogeography-based optimization trainer for classifying sonar dataset using multi-layer perceptron neural network. Analog Integr Circuits Signal Process. 2019;100(2):405–28.

    Article  Google Scholar 

  17. Kaveh M, Mesgari MS. Improved biogeography-based optimization using migration process adjustment: an approach for location-allocation of ambulances. Comput Ind Eng. 2019;135:800–13.

    Article  Google Scholar 

  18. Bertsimas D, Nohadani O. Robust optimization with simulated annealing. J Glob Optim. 2010;48(2):323–34.

    Article  MathSciNet  MATH  Google Scholar 

  19. Pal A, Maiti J. Development of a hybrid methodology for dimensionality reduction in Mahalanobis-Taguchi system using Mahalanobis distance and binary particle swarm optimization. Expert Syst Appl. 2010;37(2):1286–93.

    Article  Google Scholar 

  20. Aljarah I, Ala’M A, Faris H, Hassonah MA, Mirjalili S, Saadeh H. Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cognit Comput. 2018;10(3):478–95.

  21. Rostami O, Kaveh M. Optimal feature selection for SAR image classification using biogeography-based optimization (BBO) artificial bee colony (ABC) and support vector machine (SVM): a combined approach of optimization and machine learning. Comput Geosci. 2021;25(3):911–30.

    Article  MATH  Google Scholar 

  22. Qiao LY, Peng XY, Peng Y. BPSO-SVM wrapper for feature subset selection. Dianzi Xuebao (Acta Electronica Sinica). 2006;34(3):496–8.

    Google Scholar 

  23. Portelo J, Bugalho M, Trancoso I, et al. Non-speech audio event detection. In 2009 IEEE International Conference on Acoustics Speech and Signal Processing. 2009;1973–1976. IEEE.

  24. Xu X, Li Y, Wu QJ. A multiscale hierarchical threshold-based completed local entropy binary pattern for texture classification. Cognit Comput. 2020;12(1):224–37.

    Article  Google Scholar 

  25. Meinedo H, Caseiro D, Neto J, Trancoso I. AUDIMUS media: a Broadcast News speech recognition system for the European Portuguese language. In International Workshop on Computational Processing of the Portuguese Language. 2003;9–17). Springer, Berlin, Heidelberg.

  26. Siddique N, Adeli H. Nature inspired computing: an overview and some future directions. Cognit Comput. 2015;7(6):706–14.

    Article  Google Scholar 

  27. Kaveh M, Kaveh M, Mesgari MS, Paland RS. Multiple criteria decision-making for hospital location-allocation based on improved genetic algorithm. Appl Geomat. 2020;12(3):291–306.

    Article  Google Scholar 

  28. Molina D, Poyatos J, Del Ser J, García S, Hussain A, Herrera F. Comprehensive taxonomies of nature-and bio-inspired optimization: inspiration versus algorithmic behavior critical analysis recommendations. Cognit Comput. 2020;12(5):897–939.

    Article  Google Scholar 

  29. Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm. IEEE Int Conf Syst Man Cybern Comput Cybern Simul. 1997;5:4104–8.

    Google Scholar 

  30. Mirjalili S, Mirjalili SM, Yang XS. Binary bat algorithm. Neural Comput Appl. 2014;25(3–4):663–81.

    Article  Google Scholar 

  31. Emary E, Zawbaa HM, Hassanien AE. Binary grey wolf optimization approaches for feature selection. Neurocomputing. 2016;172:371–81.

    Article  Google Scholar 

  32. Afkhami S, Ma OR, Soleimani A. A binary harmony search algorithm for solving the maximum clique problem. Int J Comput Appl. 2013;69(12).

  33. Chen Y, Xie W, Zou X. A binary differential evolution algorithm learning from explored solutions. Neurocomputing. 2015;149:1038–47.

    Article  Google Scholar 

  34. Mirjalili S, Hashim SZM. BMOA: binary magnetic optimization algorithm. Int J Mach Learn Comput. 2012;2(3):204.

    Article  Google Scholar 

  35. Rashedi E, Nezamabadi-Pour H, Saryazdi S. BGSA: binary gravitational search algorithm. Nat Comput. 2010;9(3):727–45.

    Article  MathSciNet  MATH  Google Scholar 

  36. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1(1):67–82.

    Article  Google Scholar 

  37. Wang L, Wang X, Fu J, Zhen L. A novel probability binary particle swarm optimization algorithm and its application. J Softw. 2008;3(9):28–35.

    Article  Google Scholar 

  38. Mirjalili S, Lewis A. S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput. 2013;9:1–14.

    Article  Google Scholar 

  39. Guha R, Ghosh M, Chakrabarti A, Sarkar R, Mirjalili S. Introducing clustering based population in binary gravitational search algorithm for feature selection. Appl Soft Comput. 2020;93:106341.

  40. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S, Problem definitions and evaluation criteria for the CEC, . special session on real-parameter optimization. KanGAL report. 2005;2005:2005.

    Google Scholar 

  41. Yang Z, Zhang J, Tang K, Yao X, Sanderson AC. An adaptive coevolutionary differential evolution algorithm for large-scale optimization. In 2009 IEEE Congress on Evolutionary Computation. 2009;102–109). IEEE.

  42. Derrac J, Molina GSD, Herrera F. A practical tutorial on the use of non-parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput. 2011;1:3–18.

    Article  Google Scholar 

  43. Garcia S, Molina D, Lozano M, Herrera F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization. J Heuristics. 2009;15(6):617–44.

    Article  MATH  Google Scholar 

  44. Price KV, Awad NH, Ali MZ, Suganthan PN. Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. In Technical Report. 2018. Nanyang Technological University.

  45. Brest J, Maučec MS, Bošković B. The 100-digit challenge: Algorithm jde100. In 2019 IEEE Congress on Evolutionary Computation (CEC). 2019;19–26. IEEE.

  46. Zamuda A. Function evaluations upto 1e+ 12 and large population sizes assessed in distance-based success history differential evolution for 100-digit challenge and numerical optimization scenarios (DISHchain 1e+ 12) a competition entry for" 100-digit challenge, and four other numerical optimization competitions" at the genetic and evolutionary computation conference (CECCO). Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2019;2019:11–2.

    Article  Google Scholar 

  47. Lezama F, Soares J, Faia R, Vale Z. Hybrid-adaptive differential evolution with decay function (HyDE-DF) applied to the 100-digit challenge competition on single objective numerical optimization. InProceedings of the Genetic and Evolutionary Computation Conference Companion. 2019;7–8.

  48. Diep QB. Self-organizing migrating algorithm Team To Team adaptive–SOMA T3A. In 2019 IEEE Congress on Evolutionary Computation (CEC). 2019;1182–1187. IEEE.

  49. Kumar A, Misra RK, Singh D, Das S. Testing a multi-operator based differential evolution algorithm on the 100-digit challenge for single objective numerical optimization. In 2019 IEEE Congress on Evolutionary Computation (CEC). 2019;34–40). IEEE.

  50. Truong TC, Diep QB, Zelinka I, Senkerik R. Pareto-Based Self-organizing Migrating Algorithm Solving 100-Digit Challenge. In Swarm Evolutionary and Memetic Computing and Fuzzy and Neural Computing. 2019;13–20. Springer, Cham.

  51. Zhang SX, Chan WS, Tang KS, Zheng SY. Restart based collective information powered differential evolution for solving the 100-digit challenge on single objective numerical optimization. In 2019 IEEE Congress on Evolutionary Computation (CEC). 2019;14–18. IEEE.

  52. Wang Y. Co-op: Cooperative machine learning from mobile devices Thesis: Master of science. Canada: University of Alberta; 2017.

    Google Scholar 

  53. Viktorin A, Senkerik R, Pluhacek M, Kadavy T, Zamuda A. DISH algorithm solving the CEC 2019 100-Digit Challenge. In 2019 IEEE Congress on Evolutionary Computation (CEC). 2019;1–6. IEEE.

  54. Brest J, Zamuda A, Fister I, Boskovic B. Some improvements of the self-adaptive jDE algorithm. In2014 IEEE Symposium on Differential Evolution (SDE) 2014;1–8. IEEE.

  55. Yeh JF, Chen TY, Chiang TC. Modified l-shade for single objective real-parameter optimization. In 2019 IEEE Congress on Evolutionary Computation (CEC). 2019;381–386. IEEE.

  56. Epstein A, Ergezer M, Marshall I, Shue W. Gade with fitness-based opposition and tidal mutation for solving ieee cec2019 100-digit challenge. In 2019 IEEE Congress on Evolutionary Computation (CEC). 2019;395–402. IEEE.

  57. Bujok P, Zamuda A. Cooperative model of evolutionary algorithms applied to CEC 2019 single objective numerical optimization. In 2019 IEEE Congress on Evolutionary Computation (CEC). 2019;366–371. IEEE.

  58. Xu P, Luo W, Lin X, Qiao Y, Zhu T. Hybrid of PSO and CMA-ES for global optimization. In 2019 IEEE Congress on Evolutionary Computation (CEC). 2019;27–33. IEEE.

  59. Brest J, Zumer V, Maucec MS. Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In 2006 IEEE international conference on evolutionary computation. 2006;215–222. IEEE.

Download references

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in close collaboration among all authors. J. Wang contributed to the data analysis, interpretation, and critical revision of the paper. M. Khishe conceived the method and experiments and implemented and conducted the experiments. M. Kaveh contributed to the experiments and in analyzing the results. H. Mohammadi analyzed the results. All the authors have contributed to writing the paper.

Corresponding author

Correspondence to Mohammad Khishe.

Ethics declarations

Ethical Approval

This paper does not contain any studies with human participants or animals.

Informed Consent

As this paper does not contain any studies with human participants or animals, the informed consent is not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Khishe, M., Kaveh, M. et al. Binary Chimp Optimization Algorithm (BChOA): a New Binary Meta-heuristic for Solving Optimization Problems. Cogn Comput 13, 1297–1316 (2021). https://doi.org/10.1007/s12559-021-09933-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-021-09933-7

Keywords

Navigation