Skip to main content

Advertisement

Log in

Adaptive Dynamic Programming Algorithm for Renewable Energy Scheduling and Battery Management

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The employment of intelligent energy management systems likely allows reducing consumptions and thus saving money for consumers. The residential load demand must be met, and some advantages can be obtained if specific optimization policies are taken. With an efficient use of renewable sources and power imported from the grid, an intelligent and adaptive system which manages the battery is able to satisfy the load demand and minimize the entire energy cost related to the scenario under study. In this paper, an adaptive dynamic programming–based algorithm is presented to face dynamic situations, in which some conditions of the environment or habits of customer may vary with time, especially using renewable energy. Based on the idea of smart grid, we propose an intelligent management scheme for renewable resources combined with battery implemented with a faster and simpler scheme of dynamic programming, by considering only one critic network and some optimization policies in order to satisfy the load demand. Since this kind of problem is suitable to avoid the training of an action network, the training loop among the two neural networks is deleted and the training process is greatly simplified. Computer simulations confirm the effectiveness of this self-learning design in a typical residential scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Amin SM, Wollenberg BF. Toward a smart grid: power delivery for the 21st century. IEEE Power Energy Mag 2005;3(5):34–41.

    Article  Google Scholar 

  2. Garrity TF. Getting smart. IEEE Power Energy Mag 2008;6(2):38–45.

    Article  Google Scholar 

  3. Meliopoulos APS, Cokkinides G, Huang RK, Farantatos E, Choi S, Lee Y, Yu X. Smart grid technologies for autonomous operation and control. IEEE Trans Smart Grid 2011;2(1):1–10.

    Article  Google Scholar 

  4. Klein KM, Springer PL, Black WZ. Real-time ampacity and ground clearance software for integration into smart grid technology. IEEE Trans Power Deliv 2011;25(3):1768–1777.

    Article  Google Scholar 

  5. Li F, Qiao W, Sun H, Wan H, Wang J, Xia Y, Xu Z, Zhang P. Smart transmission grid: vision and framework. IEEE Trans Smart Grid 2010;1(2):168–177.

    Article  Google Scholar 

  6. Roncero JR. Integration is key to smart grid management. In: Proceeding of the IET-CIRED seminar smartgrids for distribution, 2008. p. 1–4.

  7. Sheble GB. Smart grid millionaire. IEEE Power Energy Mag 2008;6(1):22–28.

    Article  Google Scholar 

  8. Belvedere B, Bianchi M, Borghetti A, Paolone M. A microcontroller-based automatic scheduling system for residential microgrids. In: Proceeding of IEEE Bucharest power technology, 2009. pp. 1–6.

  9. Chiang SJ, Chang KT, Yen CY. Residential photovoltaic energy storage system. IEEE Trans Industr Electron 1998;45(3):385–394.

    Article  Google Scholar 

  10. Momoh JA, Wang Y, Eddy-Posey F. Optimal power dispatch of photovoltaic system with random load. In: Proceeding of IEEE Power Engineering Society, 2004. p. 1939–1945.

  11. Maly DK, Kwan KS. Optimal battery energy storage system (BESS) charge scheduling with dynamic programming, In: Proceeding of IEEE science, measurement and technology, 1995. p. 453–458.

  12. Bakirtzis AG, Dokopoulos PS. Short term generation scheduling in a small autonomous system with unconventional energy system. IEEE Trans Power Syst 1988;3(3):1230–1236.

    Article  Google Scholar 

  13. Corrigan PM, Heydt GT. Optimized dispatch of a residential solar energy system. In: Proceeding of the North American power symposium, 2007. p. 183–188.

  14. Rupanagunta P, Baughman ML, Jones JW. Scheduling of cool storage using non-linear programming techniques. IEEE Trans Power Syst 1995;10(3):1279–1285.

    Article  Google Scholar 

  15. Liang RH, Liao JH. A fuzzy-optimization approach for generation scheduling with wind and solar energy systems. IEEE Trans Power Syst 2007;22(4): 1665–1674.

    Article  Google Scholar 

  16. Cau TDH, Kaye RJ, Jones JW. Multiple distributed energy storage scheduling using constructive evolutionary programming. In: Proceeding of the IEEE international conference on power industry computer applications, 2001. p. 402–407.

  17. Fung CC, Ho SCY, Nayar CV. Optimization of a hybrid energy system using simulated annealing technique. In: Proceeding of IEEE international conference on computer communication control power engineering, 1993. p. 173–191.

  18. Pedrasa MAA, Spooner TD, MacGilland IF. Scheduling of demand side resources using binary particle swarm optimization. IEEE Trans Power Syst 2009;24(30):1173–1181.

    Article  Google Scholar 

  19. Lee TY. Operating schedule of battery energy storage system in a time-of-use rate industrial user with wind turbine generators: a multipass iteration particle swarm optimization approach. IEEE Trans Energy Convers 2007;22(3):774–782.

    Article  Google Scholar 

  20. Zhang H, Quan Y. Modeling, identification and control of a class of nonlinear system. IEEE Trans Fuzzy Syst 2001;9(2): 349–354.

    Article  Google Scholar 

  21. Cui L, Zhang H, Zhang X, Luo Y. Data-based adaptive critic design for discrete-time zero-sum games using output feedback. In: IEEE symposium on adaptive dynamic programming and reinforcement learning, Paris, France, 2011. p. 190–195.

  22. Zhang X, Zhang H, Wang X, Luo Y. A new iteration approach to solve a class of finite-horizon continuous-time nonaffine nonlinear zero-sum game. Int J Innov Comput Inf Control 2011;7(2):597–608.

    Google Scholar 

  23. Ikonen E, Najim K. Multiple model-based control using finite controlled markov chains. Cogn Comput 2009;1(3):234–243.

    Article  Google Scholar 

  24. Bishop JM, Caines S. Creativity and autonomy in swarm intelligence systems. Cogn Comput. 2012; in press. doi:10.1007/s12559-012-9130-y.

  25. Werbos PJ. A menu of designs for reinforcement learning over time. In: Miller WT, Sutton RS, Werbos PJ (eds). Neural Networks for Control. Cambridge, MA: MIT Press; 1991. p. 67–95.

    Google Scholar 

  26. Wang F, Zhang H, Liu D. Adaptive dynamic programming: an introduction. Comput Intell Mag 2009;4(2):39–47.

    Article  CAS  Google Scholar 

  27. Wang F, Jin N, Liu D, Wei Q. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with \(\epsilon\)-error bound. IEEE Trans Neural Netw 2011;22(1):24–36.

    Article  PubMed  Google Scholar 

  28. Wei Q, Zhang H, Dai J. Model-free multiobjective approximate dynamic programming for discrete-time nonlinear systems with general performance index functions. Neurocomputing 2009;72(7–9), 1839–1848.

    Article  Google Scholar 

  29. Wei Q, Liu D. An iterative \(\epsilon\)-optimal control scheme for a class of discrete-time nonlinear systems with unfixed initial state. Neural Networks, 2012; in press, doi:10.1016/j.neunet.2012.02.027.

  30. Prokhorov DV, Wunsch DC. Adaptive critic designs. IEEE Trans Neural Netw 1997;8(5):997–1007.

    Article  PubMed  CAS  Google Scholar 

  31. Barto AG. Reinforcement learning and adaptive critic methods. In: White DA, Sofge DA, editors. Handbook of intelligent control: neural, fuzzy and adaptive approaches. New York: Van Nostrand Reinhold; 1992.

  32. Bertsekas DP, Tsitsiklis JN. Neuro-dynamic programming. MA: Athena Scientific; 1996.

    Google Scholar 

  33. Liu D, Xiong X, Zhang Y. Action-dependent adaptive critic designs. In: Proceeding of the INNS-IEEE international joint conference on neural network, 2001. p. 990–995.

  34. Murray JJ, Cox CJ, Lendari GG, Saeks R, Adaptive dynamic programming. IEEE Trans Syst Man Cybern C Appl Rev 2002;32(2):140–153.

    Article  Google Scholar 

  35. Si J, Wang YT. On-line learning control by association and reinforcement. IEEE Trans Neural Netw 2001;12(2):264–276.

    Article  PubMed  CAS  Google Scholar 

  36. Balakrishnan SN, Biega V. Adaptive-critic-based neural networks for aircraft optimal control. In: Proceeding of the second international conference on computer modeling and simulation. 2010. p. 2288–2293.

  37. Sutton RS, Barto AG. Reinforcement learning: an introduction. MA: MIT Press; 1988.

    Google Scholar 

  38. Werbos PJ. Advanced forecasting methods for global crisis warning and models of intelligence. In: Proceeding of the American control conference, 2008. p. 25–38.

  39. Werbos PJ. Approximate dynamicprogramming for realtime control and neural modeling. Handbook of intelligent control: neural, fuzzy and adaptive approaches. New York: Van Nostrand Reinhold; 1992.

    Google Scholar 

  40. Huang T, Liu D. Residential energy system control and management using adaptive dynamic programming. In: Proceeding of IEEE international joint conference on neural networks (IJCNN), 2011. p. 119–124.

  41. Miceli R, La Cascia D, Di Stefano A, Fiscelli G, Giaconia C. Impact of novel energy management actions on household appliances for money savings and CO2 emissions reduction. In: Proceeding of the EVER09 conference, Principato di Monaco, Monaco, 2009. p. 1–5.

  42. Markvart T. Solar electricity. 2nd ed. New York, NY: Wiley; 2000.

    Google Scholar 

  43. Chedid R, Akiki H, Rahman S. A decision support technique for the design of hybrid solar-wind power systems. IEEE Trans Energy Convers 1998;13(1):76–83.

    Article  Google Scholar 

  44. Linden D, Reddy TB. Handbook of batteries. 3rd ed. New York, NY: McGraw-Hill; 2002.

    Google Scholar 

  45. Bellman RE. Dynamic programming. New Jersey: Princeton University Press; 1957.

    Google Scholar 

  46. Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 1994;5(6):989–993.

    Article  PubMed  CAS  Google Scholar 

  47. National renewable energy laboratory (NREL) of U.S. Department of Energy: http://www.nrel.gov/rredc/, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

  48. ComEd, USA. Accessed 16 May 2010. [Online] Available: http://www.thewattspot.com/.

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grants 60904037, 60921061, and 61034002, in part by Beijing Natural Science Foundation under Grant 4102061, and in part by China Postdoctoral Science Foundation under Grant 201104162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boaro, M., Fuselli, D., Angelis, F.D. et al. Adaptive Dynamic Programming Algorithm for Renewable Energy Scheduling and Battery Management. Cogn Comput 5, 264–277 (2013). https://doi.org/10.1007/s12559-012-9191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-012-9191-y

Keywords

Navigation