Skip to main content
Log in

Comparative Study on Improving the Ball Mill Process Parameters Influencing on the Synthesis of Ultrafine Silica Sand: A Taguchi Coupled Optimization Technique

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Taguchi-based experimental design technique has been a major research area for making systematic approaches to understand the complex process of ball mill process parameters influencing on the synthesis of ultrafine silica sand monolayer degradation. To determine an optimal setting, Taguchi coupled optimization technique has been applied with a novel approach as there is no previous work focusing on the synthesis of ultrafine silica sand taking in account the ball milling process parameters and Taguchi coupled optimization techniques. The high-grade silica was milled in planetary ball mill and the selected samples were passed through washing, crushing, dehydrating, meshing and drying operations. The samples were analyzed using Malvern Instruments for particle size distribution. The experiments were conducted as per Taguchi’s L9 orthogonal array. Process parameters were analyzed using the signal-to-noise ratio based on the-smaller-the-better approach. To minimize the effect of uncontrollable variables, The ANOVA results determined the significance of the influential controllable variables so that the variability in the response is small. Optimization results confirmed that the balls to powder weight ratio were the most influential process parameter. The optimum process parameters setting concluded that balls to powder weight ratio are 20:1, the optimum ball mill working capacity is 2 L while the optimum speed of the ball mill is 105 rpm. Using SEM characterization, the improved particles of silica sand presented a spherical shape with a cluster. Using TEM of different structures of the ultrafine silica sand containing asymmetrical characteristics of particles confirmed the solid form of the ultrafine silica sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 20.

    Article  Google Scholar 

  2. Pan, Z., Liu, Z., Zhang, Z., Shang, L., & Ma, S. (2018). Effect of silica sand size and saturation on methane hydrate formation in the presence of SDS. Journal of Natural Gas Science and Engineering, 56, 266–280.

    Article  Google Scholar 

  3. Sundararajan, M., Ramaswamy, S., & Raghavan, P. (2009). Evaluation for the beneficiability of white silica sands from the overburden of lignite mine situated in Rajpardi district of Gujarat, India. Journal of Minerals and Materials Characterization and Engineering, 8, 701.

    Article  Google Scholar 

  4. Choi, W., Chung, H., Yoon, B., & Kim, S. (2001). Applications of grinding kinetics analysis to fine grinding characteristics of some inorganic materials using a composite grinding media by planetary ball mill. Powder Technology, 115, 209–214.

    Article  Google Scholar 

  5. Dai, L., Li, C., Zhang, J., & Cheng, F. (2018). Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. Carbohydrate Polymers, 180, 122–127.

    Article  Google Scholar 

  6. Hassani, A., Karaca, M., Karaca, S., Khataee, A., Açışlı, Ö., & Yılmaz, B. (2018). Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. Journal of Environmental Management, 211, 53–62.

    Article  Google Scholar 

  7. Burmeister, C., Titscher, L., Breitung-Faes, S., & Kwade, A. (2018). Dry grinding in planetary ball mills: Evaluation of a stressing model. Advanced Powder Technology, 29, 191–201.

    Article  Google Scholar 

  8. Chen, D., Ni, S., & Chen, Z. (2007). Synthesis of Fe3O4 nanoparticles by wet milling iron powder in a planetary ball mill. China Particuology, 5, 357–358.

    Article  Google Scholar 

  9. Szafraniec, J., Antosik, A., Knapik-Kowalczuk, J., Kurek, M., Syrek, K., Chmiel, K., et al. (2017). Planetary ball milling and supercritical fluid technology as a way to enhance dissolution of bicalutamide. International Journal of Pharmaceutics, 533, 470–479.

    Article  Google Scholar 

  10. Geier, N., & Szalay, T. (2017). Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP). Measurement, 110, 319–334.

    Article  Google Scholar 

  11. Madhavi, S. K., Sreeramulu, D., & Venkatesh, M. (2017). Evaluation of optimum turning process of process parameters using DOE and PCA Taguchi method. Materials Today: Proceedings, 4, 1937–1946.

    Google Scholar 

  12. Shukla, R., & Singh, D. (2017). Experimentation investigation of abrasive water jet machining parameters using Taguchi and evolutionary optimization techniques. Swarm and Evolutionary Computation, 32, 167–183.

    Article  Google Scholar 

  13. Pillai, J. U., Sanghrajka, I., Shunmugavel, M., Muthuramalingam, T., Goldberg, M., & Littlefair, G. (2018). Optimisation of multiple response characteristics on end milling of aluminium alloy using Taguchi-Grey relational approach. Measurement, 124, 291–298.

    Article  Google Scholar 

  14. Wangikar, S. S., Patowari, P. K., & Misra, R. D. (2018). Parametric optimization for photochemical machining of copper using overall evaluation criteria. Materials Today: Proceedings, 5, 4736–4742.

    Google Scholar 

  15. Mia, M. (2018). Mathematical modeling and optimization of MQL assisted end milling characteristics based on RSM and Taguchi method. Measurement, 121, 249–260.

    Article  Google Scholar 

  16. Mia, M., Dey, P. R., Hossain, M. S., Arafat, M. T., Asaduzzaman, M., Ullah, M. S., et al. (2018). Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Measurement, 122, 380–391.

    Article  Google Scholar 

  17. Mohanavel, V., Ravichandran, M., & Kumar, S. S. (2018). Optimization of tungsten inert gas welding parameters to: Attain maximum impact strength in AA6061 alloy joints using Taguchi technique. Materials Today: Proceedings, 5, 25112–25120.

    Google Scholar 

  18. Wu, W., Pirbhulal, S., Sangaiah, A. K., Mukhopadhyay, S. C., & Li, G. (2018). Optimization of signal quality over comfortability of textile electrodes for ECG monitoring in fog computing based medical applications. Future Generation Computer Systems, 86, 515–526.

    Article  Google Scholar 

  19. Hong, Y.-Y., Beltran, A. A., Jr., & Paglinawan, A. C. (2018). A robust design of maximum power point tracking using Taguchi method for stand-alone PV system. Applied Energy, 211, 50–63.

    Article  Google Scholar 

  20. Naik, A. B., & Reddy, A. C. (2018). Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA). Thermal Science and Engineering Progress, 8, 327–339.

    Article  Google Scholar 

  21. Dhawane, S. H., Karmakar, B., Ghosh, S., & Halder, G. (2018). Parametric optimisation of biodiesel synthesis from waste cooking oil via Taguchi approach. Journal of Environmental Chemical Engineering, 6, 3971–3980.

    Article  Google Scholar 

  22. Ahmadi, Z., Nayebi, B., Asl, M. S., Farahbakhsh, I., & Balak, Z. (2018). Densification improvement of spark plasma sintered TiB2-based composites with micron-, submicron-and nano-sized SiC particulates. Ceramics International, 44, 11431–11437.

    Article  Google Scholar 

  23. Naqiuddin, N. H., Saw, L. H., Yew, M. C., Yusof, F., Poon, H. M., Cai, Z., et al. (2018). Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method. Applied Energy, 222, 437–450.

    Article  Google Scholar 

  24. Sun, G., Zhang, H., Fang, J., Li, G., & Li, Q. (2018). A new multi-objective discrete robust optimization algorithm for engineering design. Applied Mathematical Modelling, 53, 602–621.

    Article  Google Scholar 

  25. Ozcelik, B., & Erzurumlu, T. (2006). Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. Journal of Materials Processing Technology, 171, 437–445.

    Article  Google Scholar 

  26. Zhang, J.-T., Cheng, M.-Y., Wu, H.-T., & Zhou, B. (2019). A new test for functional one-way ANOVA with applications to ischemic heart screening. Computational Statistics & Data Analysis, 132, 3–17.

    Article  MathSciNet  Google Scholar 

  27. Hussain, Z. (2020). Multi performance optimization in machining of EN31-535A99SS with interchangeable straight cemented tungsten carbide-cobalt mixed (WC–Co) insert grade (CSTC—K20) using Taguchi coupled grey relational analysis. SN Applied Sciences, 2, 197.

    Article  Google Scholar 

  28. Araujo, J., Gonzalez-Mira, E., Egea, M., Garcia, M., & Souto, E. (2010). Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. International Journal of Pharmaceutics, 393, 168–176.

    Article  Google Scholar 

  29. Pang, J., Ansari, M., Zaroog, O. S., Ali, M. H., & Sapuan, S. (2014). Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/Al/Ep) hybrid composite. HBRC Journal, 10, 138–144.

    Article  Google Scholar 

  30. Vellaiyan, S., Subbiah, A., & Chockalingam, P. (2019). Multi-response optimization to improve the performance and emissions level of a diesel engine fueled with ZnO incorporated water emulsified soybean biodiesel/diesel fuel blends. Fuel, 237, 1013–1020.

    Article  Google Scholar 

  31. Taguchi, N., Oda, S., Yokota, Y., Yamamura, S., Imuta, M., Tsuchigame, T., et al. (2019). CT texture analysis for the prediction of KRAS mutation status in colorectal cancer via a machine learning approach. European Journal of Radiology, 118, 38–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z. Comparative Study on Improving the Ball Mill Process Parameters Influencing on the Synthesis of Ultrafine Silica Sand: A Taguchi Coupled Optimization Technique. Int. J. Precis. Eng. Manuf. 22, 679–688 (2021). https://doi.org/10.1007/s12541-021-00492-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00492-3

Keywords

Navigation