Skip to main content
Log in

Effects of Ni and Cr on Cryogenic Impact Toughness of Bainite/Martensite Multiphase Steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the present research, the effects of Nickel (Ni) and Chromium (Cr) on cryogenic impact toughness (CIT) of low-carbon bainite/martensite multiphase steels [processed by two different cooling processes: isothermal transformation process (ITP) and continuous cooling process (CCP)] were investigated. It was found that due to the formation of carbides during isothermal treatment, the addition of Ni and Cr yielded no significant improvements in CIT. However, during CCP treatment, the addition of Ni manifested a considerable enhancement in CIT, whereas the addition of both Ni and Cr caused a decrease in CIT. Further, after ITP treatment, the microstructure of all steels consisted of bainite and martenite, while Ni + Cr steel contained the largest amount of bainite. The microstructures of the CCP-treated steels mainly also consisted of bainite and martensite, but no retained austenite and carbides were observed, thus resulting in a superior CIT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

CIT:

Cryogenic impact toughness

ITP:

Isothermal transformation process

CCP:

Continuous cooling process

Ni:

Nickel

Cr:

Chromium

Bs:

Starting temperature of bainitic transformation

Ms:

Starting temperature of martensitic transformation

SEM:

Scanning electron microscope

TEM:

Transmission electron microscope

XRD:

X-ray diffraction

RA:

Retained austenite

M:

Martensite

BF:

Bainitic ferrite

TM:

Tempered martensite

TC:

Tempered carbide

M/A:

Martensite and austenite

GB:

Granular bainite

LM:

Lath martensite

AM:

Prior martensite

FM:

Fresh martensite

Mn:

Manganese

References

  1. S.V. Konovalov, V.E. Kormyshev, Y.F. Ivanov, V.E. Gromov, I.A. Komissarova, Mater. Sci. Forum 906, 101 (2017)

    Article  Google Scholar 

  2. Y. Cao, Z.D. Wang, J. Kang, G.D. Wang, J. Iron. Steel Res. Int. 4, 70 (2013)

    Article  Google Scholar 

  3. V.I. Novikov, V.V. Dmitriev, K.I. Nedashkovskii, Met. Sci. Heat Treat. 56, 159 (2014)

    Article  Google Scholar 

  4. M.I. Hartshorne, C. Mccormick, M. Schmidt, P. Novotny, D. Isheim, D.N. Seidman, M.L. Taheri, Metal. Mater. Trans. A 47, 1517 (2016)

    Article  Google Scholar 

  5. D. Delagnes, F. Pettinaristurmel, M.H. Mathon, R. Danoix, F. Danoix, C. Bellot, P. Lamesle, A. Grellier, Acta Mater. 60, 5877 (2012)

    Article  Google Scholar 

  6. H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, G.H. Liu, Mater. Des. 84, 95 (2015)

    Article  Google Scholar 

  7. W. Solano-Alvarez, E.J. Pickering, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 617, 156 (2014)

    Article  Google Scholar 

  8. H. Lan, L. Du, N. Zhou, X.H. Liu, Acta Metall. Sin. 27, 19 (2014)

    Article  Google Scholar 

  9. W. Yan, L. Zhu, W. Sha, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 517, 369 (2009)

    Article  Google Scholar 

  10. F.G. Caballero, H. Roelofs, S. Hasler, C. Capdevila, J. Chao, J. Cornide, C. Garcia-Mateo, Mater. Sci. Technol. 28, 95 (2012)

    Article  Google Scholar 

  11. B. Avishan, S. Yazdani, S.H. Nedjad, Mater. Sci. Eng. A 548, 106 (2012)

    Article  Google Scholar 

  12. Z.J. Luo, J.C. Shen, S.U. Hang, Y.H. Ding, C.F. Yang, X. Zhu, J. Iron. Steel Res. Int. 17, 40 (2010)

    Article  Google Scholar 

  13. J. Chakraborty, P.P. Chattopadhyay, D. Bhattacharjee, I. Manna, Metal. Mater. Trans. A 41, 2871 (2010)

    Article  Google Scholar 

  14. D.Y. Liu, H. Xu, K. Yang, B.Z. Bai, H.S. Fang, Acta Metall. Sin. 40, 882 (2004)

    Google Scholar 

  15. M. Wang, Z.Y. Liu, C.G. Li, Acta Metall. Sin. 30, 48 (2017)

    Google Scholar 

  16. P. Wang, K.S. Kumar, Mater. Sci. Eng. A 519, 184 (2009)

    Article  Google Scholar 

  17. L.U. Ma, G.J. Liang, J. Tan, L.J. Rong, Y.Y. Li, J. Mater. Sci. Technol. 15, 67 (1999)

    Article  Google Scholar 

  18. J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, X.L. Wan, Metals 7, 40 (2017)

    Article  Google Scholar 

  19. D.D. Shen, S.H. Song, Z.X. Yuan, L.Q. Weng, Mater. Sci. Eng. Ser. A 394, 53 (2005)

    Article  Google Scholar 

  20. S.H. Song, H. Zhuang, J. Wu, Z.X. Yuan, T.H. Xi, Mater. Sci. Eng. A 486, 433 (2008)

    Article  Google Scholar 

  21. C.M. Lin, C.M. Chang, J.H. Chen, W. Wu, Mater. Sci. Eng. A 527, 5038 (2010)

    Article  Google Scholar 

  22. H. Pous-Romero, H.K.D.H. Bhadeshia, Metal. Mater. Trans. A 45, 4897 (2014)

    Article  Google Scholar 

  23. M.N. Yoozbashi, S. Yazdani, T.S. Wang, Mater. Des. 32, 3248 (2011)

    Article  Google Scholar 

  24. M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, J.Y. Tian, Steel Res. Int. (2016). https://doi.org/10.1002/srin.201600377

    Google Scholar 

  25. J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, Steel Res. Int. (2010). https://doi.org/10.1002/srin.201700469

    Google Scholar 

  26. A.S. Podder, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 527, 2121 (2010)

    Article  Google Scholar 

  27. J.H. Ryu, D.I. Kim, H.S. Kim, H.K.D.H. Bhadeshia, D.W. Suh, Scr. Mater. 63, 297 (2010)

    Article  Google Scholar 

  28. K. Iwanaga, T. Tsuchiyama, S. Takaki, Key Eng. Mater. 171, 477 (2000)

    Google Scholar 

  29. Z. Oksiuta, N. Baluc, J. Nucl. Mater. 374, 178 (2008)

    Article  Google Scholar 

  30. Y.Y. Song, D.H. Ping, F.X. Yin, X.Y. Li, Y.Y. Li, Mater. Sci. Eng. A 527, 614 (2010)

    Article  Google Scholar 

  31. A. Kostka, K.G. Tak, R.J. Hellmig, Y. Estrin, G. Eggeler, Acta Mater. 55, 539 (2007)

    Article  Google Scholar 

  32. L. Daróczi, S. Gyöngyösi, L.Z. Tóth, D.L. Beke, Scr. Mater. 114, 161 (2016)

    Article  Google Scholar 

  33. P. Boullay, D. Schryvers, J.M. Ball, Acta Mater. 51, 1421 (2003)

    Article  Google Scholar 

  34. P. Zhang, Y. Chen, W. Xiao, D.H. Ping, X.Q. Zhao, Prog. Nat. Sci-Mater. Int. 26, 169 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (NSFC) (Nos. 51874216 and 51704217), The Major Projects of Technology Innovation of Hubei Province (No. 2017AAA116), The project of Science and Technology Plan of Wuhan (No. 2018010402011187) and Hebei Joint Research Fund for Iron and Steel (No.E2018318013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Xu, G., Jiang, Z. et al. Effects of Ni and Cr on Cryogenic Impact Toughness of Bainite/Martensite Multiphase Steels. Met. Mater. Int. 25, 1151–1160 (2019). https://doi.org/10.1007/s12540-019-00262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00262-x

Keywords

Navigation