Skip to main content
Log in

Microstructures and Mechanical Properties of Multiphase-Reinforced In Situ Aluminum Matrix Composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We investigated the microstructures and mechanical properties of multiphase-reinforced in situ aluminum matrix composites (AMCs) prepared with various combinations and contents of Li, Mg, Si, Cu, Zn, Sn, and Ni. The area fractions of the secondary phases in the as-cast AMCs ranged from 26% to 58%, and the types of secondary phases depended on the alloy chemical compositions. The type and amount of secondary phases were more important than matrix strengthening in determining the alloy mechanical properties. Composite hardness and compressive stress increased while fracture strain decreased with increasing total area fraction of the secondary phases up to 40%. The formation of coarse primary and soft/heavy Sn-containing phases significantly deteriorated the alloy mechanical properties. Annealing also influenced the mechanical properties of the AMCs by changing the microstructures of the secondary phases and Al matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.L. Pramod, S.R. Bakshi, B.S. Murty, Aluminum-based cast in situ composites: a review. J. Mater. Eng. Perfom. 24, 2185–2207 (2015)

    Article  Google Scholar 

  2. Q. Gao, S. Wu, S. Lü, X. Xiong, R. Du, P. An, Improvement of particles distribution of in situ 5 vol% TiB2 particulates reinforced Al–4.5Cu alloy matrix composites with ultrasonic vibration treatment. J. Alloys Compd. 692, 1–9 (2017)

    Article  Google Scholar 

  3. P. Li, E.G. Kandalova, V.I. Nikitin, In situ synthesis of Al–TiC in aluminum melt. Mater. Lett. 59, 2545–2548 (2005)

    Article  Google Scholar 

  4. B.S.S. Daniel, V.S.R. Murthy, Directed melt oxidation and nitridation of aluminium alloys: a comparison. Mater. Des. 16, 155–161 (1995)

    Article  Google Scholar 

  5. G.I. Eskin, D.G. Eskin, Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt. Ultrason. Sonochem. 10, 297–301 (2003)

    Article  Google Scholar 

  6. C. Li, Y.Y. Wu, H. Li, X.F. Liu, Morphological evolution and growth mechanism of primary Mg2Si phase in Al–Mg2Si alloys. Acta Mater. 59, 1058–1067 (2011)

    Article  Google Scholar 

  7. Q.D. Ding, Y.G. Zhao, C. Liu, P.J. Cong, W. Zhou, Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite. J. Alloys Compd. 454, 142–146 (2008)

    Article  Google Scholar 

  8. M. Emamy, N. Nemati, A. Heidarzadeh, The influence of Cu rich intermetallics phases on the microstructure, hardness and tensile properties of Al–15%Mg2Si composite. Mater. Sci. Eng. A 527, 2998–3004 (2010)

    Article  Google Scholar 

  9. S. Ji, F. Yan, Z. Fan, Development of a high strength Al–Mg2Si–Mg–Zn based alloy for high pressure die casting. Mater. Sci. Eng. A 626, 165–174 (2015)

    Article  Google Scholar 

  10. N. Soltani, A. Bahrami, M.I. Pech-Canul, The effect of Ti on mechanical properties of extruded in situ Al–15 pct Mg2Si composite. Metall. Mater. Trans. A 44A, 4366–4373 (2013)

    Article  Google Scholar 

  11. A. Bahrami, A. Razaghian, M. Emamy, R. Khorshidi, The effect of Zr on the microstructure and tensile properties of hot-extruded Al–Mg2Si composite. Mater. Des. 36, 323–330 (2012)

    Article  Google Scholar 

  12. X. Yang, S.Y. Chen, J.D. Cotton, Y. Zhang, Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM 66, 2009–2020 (2014)

    Article  Google Scholar 

  13. E.-J. Baek, T.-Y. Ahn, J.-G. Jung, J.-M. Lee, Y.-R. Cho, K. Euh, Effects of ultrasonic melt treatment and solution treatment on the microstructure and mechanical properties of low-density multicomponent Al70Mg10Si10Cu5Zn5 alloy. J. Alloys Compd. 696, 450–459 (2017)

    Article  Google Scholar 

  14. T.-Y. Ahn, J.-G. Jung, E.-J. Baek, S.S. Hwang, K. Euh, Temporal evolution of precipitates in multicomponent Al–6Mg–9Si–10Cu–10Zn–3Ni alloy studied by complementary experimental methods. J. Alloys Compd. 701, 660–668 (2017)

    Article  Google Scholar 

  15. T.-Y. Ahn, J.-G. Jung, E.-J. Baek, S.S. Hwang, K. Euh, Temperature dependence of precipitation behavior of Al–6Mg–9Si–10Cu–10Zn–3Ni natural composite and its impact on mechanical properties. Mater. Sci. Eng. A 695, 45–54 (2017)

    Article  Google Scholar 

  16. N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, vol. 1, 1st edn. (Eslevier, Oxford, 1998)

    Google Scholar 

  17. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233–238 (2012)

    Article  Google Scholar 

  18. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)

    Article  Google Scholar 

  19. L.R. Garcia, W.R. Osório, A. Garcia, The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy. Mater. Des. 32, 3008–3012 (2011)

    Article  Google Scholar 

  20. H. Lee, J.H. Choi, M.C. Jo, I. Jo, S.-K. Lee, S. Lee, Effects of strain rate on compressive properties in bimodal 7075Al–SiCp composite. Metals Mater. Int. 24, 894–903 (2018)

    Article  Google Scholar 

  21. R. Khorshidi, A.H. Raouf, M. Emamy, J. Campbell, The study of Li effect on the microstructure and tensile properties of cast Al–Mg2Si metal matrix composite. J. Alloys Compd. 509, 9026–9033 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Main Research Program (PNK5270) funded by the Korea Institute of Materials Science (KIMS, Republic of Korea), and by the Industrial Strategic Technology Development Program (10062304) funded by the Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Gil Jung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Jung, JG., Baek, EJ. et al. Microstructures and Mechanical Properties of Multiphase-Reinforced In Situ Aluminum Matrix Composites. Met. Mater. Int. 25, 353–363 (2019). https://doi.org/10.1007/s12540-018-0195-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0195-3

Keywords

Navigation