Skip to main content
Log in

Microstructural Degradation and Creep Fracture Behavior of Conventionally and Thermomechanically Treated 9% Chromium Heat Resistant Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The microstructural degradation and the creep fracture behavior of conventionally and thermomechanically treated Grade 91 steel were investigated after performing small punch creep tests. A remarkable reduction in creep ductility was observed for the samples thermomechanically treated in comparison to those conventionally treated under the tested conditions of load (200 N) and temperature (700 °C). A change in the fracture mechanism from a ductile transgranular fracture to a brittle intergranular fracture was observed when changing from the conventionally treated to the thermomechanically treated processing condition, leading to this drop in creep ductility. The change in the fracture mechanism was associated to the localized concentration of creep deformation, close to coarse M23C6 carbides, at the vicinity of prior austenite grain boundaries (PAGB) in the thermomechanically treated samples. The preferential recovery experienced at the vicinity of PAGB produced the loss of the lath structure and the coarsening of the M23C6 precipitates. The electron microscopy images provided suggest that the creep cavities nucleate in these weak recovered areas, associated to the presence of coarse M23C6. After the coalescence of the cavities the propagation of the cracks was facilitated by the large prior austenite grain size produced during the austenitization which favors the propagation of the cracks along grain boundaries triggering the intergranular brittle fracture. This fracture mechanism limits the potential use of the proposed thermomechanical processing routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.L. Klueh, D.S. Gelles, S. Jitsukawa, A. Kimura, G.R. Odette, B. van der Schaaf, M. Victoria, J. Nucl. Mater. 307–311(Part 1), 455–465 (2002)

    Article  Google Scholar 

  2. R.L. Klueh, K. Ehrlich, F. Abe, J. Nucl. Mater. 191–194(Part A), 116–124 (1992)

    Google Scholar 

  3. L. Tan, Y. Katoh, A.A.F. Tavassoli, J. Henry, M. Rieth, H. Sakasegawa, H. Tanigawa, Q. Huang, J. Nucl. Mater. 479, 515–523 (2016)

    Article  Google Scholar 

  4. F. Masuyama, ISIJ Int. 41, 612–625 (2001)

    Article  Google Scholar 

  5. S.J. Zinkle, G.S. Was, Acta Mater. 61, 735–758 (2013)

    Article  Google Scholar 

  6. F. Abe, T. Horiuchi, M. Taneike, K. Sawada, Mater. Sci. Eng. A 378, 299–303 (2004)

    Article  Google Scholar 

  7. F. Abe, Mater. Sci. Eng. A 387, 565–569 (2004)

    Article  Google Scholar 

  8. F. Abe, Engineering 1, 211–224 (2015)

    Article  Google Scholar 

  9. S. Hollner, B. Fournier, J. Le Pendu, T. Cozzika, I. Tournié, J.C. Brachet, A. Pineau, J. Nucl. Mater. 405, 101–108 (2010)

    Article  Google Scholar 

  10. M. Song, C. Sun, Z. Fan, Y. Chen, R. Zhu, K.Y. Yu, K.T. Hartwig, H. Wang, X. Zhang, Acta Mater. 112, 361–377 (2016)

    Article  Google Scholar 

  11. J. Vivas, C. Celada-Casero, D. San Martín, M. Serrano, E. Urones-Garrote, P. Adeva, M.M Aranda, C. Capdevila, Metall. Mater. Trans. A 47, 1–8 (2016)

    Article  Google Scholar 

  12. M. Tamura, H. Sakasegawa, A. Kohyama, H. Esaka, K. Shinozuka, J. Nucl. Mater. 321, 288–293 (2003)

    Article  Google Scholar 

  13. J. Vivas, C. Capdevila, E. Altstadt, M. Houska, M. Serrano, D. De-Castro, D. San-Martín, Mater. Sci. Eng. A 728, 259–265 (2018)

    Article  Google Scholar 

  14. S. Holdsworth, Mater. High Temp. 34, 97–98 (2017)

    Article  Google Scholar 

  15. J. Parker, Mater. High Temp. 34, 109–120 (2017)

    Article  Google Scholar 

  16. E.N. Campitelli, P. Spätig, R. Bonadé, W. Hoffelner, M. Victoria, J. Nucl. Mater. 335, 366–378 (2004)

    Article  Google Scholar 

  17. Y. Ruan, P. Spätig, M. Victoria, J. Nucl. Mater. 307, 236–239 (2002)

    Article  Google Scholar 

  18. D.J. Brookfield, W. Li, B. Rodgers, J.E. Mottershead, T.K. Hellen, J. Jarvis, R. Lohr, R. Howard-Hildige, A. Carlton, M. Whelan, J. Strain Anal. Eng. Des. 34, 423–436 (1999)

    Article  Google Scholar 

  19. M.P. Manahan, A.S. Argon, O.K. Harling, J. Nucl. Mater. 104, 1545–1550 (1981)

    Article  Google Scholar 

  20. E. Altstadt, M. Serrano, M. Houska, A. García-Junceda, Mater. Sci. Eng. A 654, 309–316 (2016)

    Article  Google Scholar 

  21. E. Altstadt, H.E. Ge, V. Kuksenko, M. Serrano, M. Houska, M. Lasan, M. Bruchhausen, J.M. Lapetite, Y. Dai, J. Nucl. Mater. 472, 186–195 (2016)

    Article  Google Scholar 

  22. J. Vivas, C. Capdevila, E. Altstadt, M. Houska, D. San-Martín, Scr. Mater. 153, 14–18 (2018)

    Article  Google Scholar 

  23. T. De Cock, C. Capdevila, F.G. Caballero, C. García de Andrés, Mater. Sci. Eng. A 519, 9–18 (2009)

    Article  Google Scholar 

  24. Y. Sugino, S. Ukai, B. Leng, N. Oono, S. Hayashi, T. Kaito, S. Ohtsuka, Mater. Trans. 53, 1753–1757 (2012)

    Article  Google Scholar 

  25. J. Vivas, C. Capdevila, J. Jimenez, M. Benito-Alfonso, D. San-Martin, Metals 7, 236 (2017)

    Article  Google Scholar 

  26. P.P. Suikkanen, C. Cayron, A.J. DeArdo, L.P. Karjalainen, J. Mater. Sci. Technol. 27, 920–930 (2011)

    Article  Google Scholar 

  27. A. Fedoseeva, N. Dudova, R. Kaibyshev, J. Mater. Sci. 52, 2974–2988 (2017)

    Article  Google Scholar 

  28. D. Rojas, J. Garcia, O. Prat, L. Agudo, C. Carrasco, G. Sauthoff, A.R. Kaysser-Pyzalla, Mater. Sci. Eng. A 528, 1372–1381 (2011)

    Article  Google Scholar 

  29. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications (Taylor & Francis/CRC Press, Boca Raton, 2005)

    Book  Google Scholar 

  30. E. Plesiutschnig, C. Beal, S. Paul, G. Zeiler, C. Sommitsch, Mater. High Temp. 32, 318–322 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge financial support to Ministerio de Economia y Competitividad (MINECO) through in the form of a Coordinate Project (MAT2016-80875-C3-1-R). Authors also would like to acknowledge financial support to Comunidad de Madrid through DIMMAT-CM_S2013/MIT-2775 project. The authors are grateful for the dilatometer tests by Phase Transformation laboratory. J.Vivas acknowledges financial support in the form of a FPI Grant BES-2014-069863. This work contributes to the Joint Programme on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Vivas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivas, J., Capdevila, C., Altstadt, E. et al. Microstructural Degradation and Creep Fracture Behavior of Conventionally and Thermomechanically Treated 9% Chromium Heat Resistant Steel. Met. Mater. Int. 25, 343–352 (2019). https://doi.org/10.1007/s12540-018-0192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0192-6

Keywords

Navigation