Skip to main content
Log in

AGONOTES: A Robot Annotator for Argonaute Proteins

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The argonaute protein (Ago) exists in almost all organisms. In eukaryotes, it functions as a regulatory system for gene expression. In prokaryotes, it is a type of defense system against foreign invasive genomes. The Ago system has been engineered for gene silencing and genome editing and plays an important role in biological studies. With an increasing number of genomes and proteomes of various microbes becoming available, computational tools for identifying and annotating argonaute proteins are urgently needed. We introduce AGONOTES (Argonaute Notes). It is a web service especially designed for identifying and annotating Ago. AGONOTES uses the BLASTP similarity search algorithm to categorize all submitted proteins into three groups: prokaryotic argonaute protein (pAgo), eukaryotic argonaute protein (eAgo), and non-argonaute protein (non-Ago). Argonaute proteins can then be aligned to the corresponding standard set of Ago sequences using the multiple sequence alignment program MUSCLE. All functional domains of Ago can further be curated from the alignment results and visualized easily through Bio::Graphic modules in the BioPerl bundle. Compared with existing tools such as CD-Search and available databases such as UniProt and AGONOTES showed a much better performance on domain annotations, which is fundamental in studying the new Ago. AGONOTES can be freely accessed at http://i.uestc.edu.cn/agonotes/. AGONOTES is a friendly tool for annotating Ago domains from a proteome or a series of protein sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ago:

Argonaute protein

AGONOTES:

Argonaute Notes

AaAgo:

Aquifex aeolicus argonaute

eAgo(s):

Eukaryotic argonaute protein(s)

ePIWIs:

ePIWI proteins

hAgo1:

Human argonaute 1

hAgo2:

Human argonaute 2

KpAgo:

Kluyveromyces polysporus argonaute

L1 domain:

Linker1 domain

L2 domain:

Linker2 domain

MID domain:

Middle domain

MpAgo:

Marinitoga piezophila argonaute

mAgo2:

Mouse argonaute 2

non-Ago(s):

Non-argonaute protein(s)

N domain:

N-terminal domain

NgAgo:

Natronobacterium gregoryi argonaute

pAgo(s):

Prokaryotic argonaute protein(s)

PAZ domain:

PIWI–Argonaute–Zwille domain

PIWI domain:

P element–induced wimpy testis domain

PfAgo:

Pyrococcus furiosus argonaute

pPIWIs:

pPIWI proteins

RsAgo:

Rhodobacter sphaeroides argonaute

SpAgo1:

Schizosaccharomyces pombe argonaute 1

TtAgo:

Thermus thermophilus argonaute

References

  1. Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17(1):170–180. https://doi.org/10.1093/emboj/17.1.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Makarova KS, Wolf YI, van der Oost J, Koonin EV (2009) Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct 4:29. https://doi.org/10.1186/1745-6150-4-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y (2014) Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci USA 111(2):652–657. https://doi.org/10.1073/pnas.1321032111

    Article  CAS  PubMed  Google Scholar 

  4. Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA (2016) A bacterial Argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci USA 113(15):4057–4062. https://doi.org/10.1073/pnas.1524385113

    Article  CAS  PubMed  Google Scholar 

  5. Parker JS, Roe SM, Barford D (2004) Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J 23(24):4727–4737. https://doi.org/10.1038/sj.emboj.7600488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305(5689):1434–1437. https://doi.org/10.1126/science.1102514

    Article  CAS  PubMed  Google Scholar 

  7. Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J (2014) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21(9):743–753. https://doi.org/10.1038/nsmb.2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA (2013) Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell 51(5):594–605. https://doi.org/10.1016/j.molcel.2013.08.014

    Article  CAS  PubMed  Google Scholar 

  9. Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJJ, van der Oost J (2014) DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507(7491):258–261. https://doi.org/10.1038/nature12971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao F, Shen XZ, Jiang F, Wu Y, Han C (2016) DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol 34(7):768–773. https://doi.org/10.1038/nbt.3547

    Article  CAS  PubMed  Google Scholar 

  11. Lee SH, Turchiano G, Ata H, Nowsheen S, Romito M, Lou Z, Ryu SM, Ekker SC, Cathomen T, Kim JS (2016) Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol 35(1):17–18. https://doi.org/10.1038/nbt.3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burgess S, Cheng L, Gu F, Huang J, Huang Z, Lin S, Li J, Li W, Qin W, Sun Y, Songyang Z, Wei W, Wu Q, Wang H, Wang X, Xiong JW, Xi J, Yang H, Zhou B, Zhang B (2016) Questions about NgAgo. Protein Cell 7(12):913–915. https://doi.org/10.1007/s13238-016-0343-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qi J, Dong Z, Shi Y, Wang X, Qin Y, Wang Y, Liu D (2016) NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish. Cell Res 26(12):1349–1352. https://doi.org/10.1038/cr.2016.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen Q, Iritani A, Ohkita S, Vu BV, Yokoya K, Matsubara A, Ikeda KI, Suzuki N, Nakayashiki H (2018) A fungal Argonaute interferes with RNA interference. Nucleic Acids Res 46(5):2495–2508. https://doi.org/10.1093/nar/gkx1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chai G, Yu M, Jiang L, Duan Y, Huang J (2017) HMMCAS: a web tool for the identification and domain annotations of Cas proteins. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2017.2665542

    Article  Google Scholar 

  16. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic acids research 42(Database issue):D222–D230. https://doi.org/10.1093/nar/gkt1223

    Article  CAS  PubMed  Google Scholar 

  17. Chen W, Lv H, Nie F, Lin H (2019) i6 mA-Pred: Identifying DNA N6-methyladenine sites in the rice genome. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz015

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dao FY, Lv H, Wang F, Feng CQ, Ding H, Chen W, Lin H (2018) Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty943

    Article  Google Scholar 

  19. He B, Chai G, Duan Y, Yan Z, Qiu L, Zhang H, Liu Z, He Q, Han K, Ru B, Guo FB, Ding H, Lin H, Wang X, Rao N, Zhou P, Huang J (2016) BDB: biopanning data bank. Nucleic Acids Res 44(D1):D1127–1132. https://doi.org/10.1093/nar/gkv1100

    Article  CAS  PubMed  Google Scholar 

  20. He B, Jiang L, Duan Y, Chai G, Fang Y, Kang J, Yu M, Li N, Tang Z, Yao P, Wu P, Derda R, Huang J (2018) Biopanning data bank 2018: hugging next generation phage display. Database J Biolog Databases Curation. https://doi.org/10.1093/database/bay032

    Article  Google Scholar 

  21. He B, Kang J, Ru B, Ding H, Zhou P, Huang J (2016) SABinder: a web service for predicting streptavidin-binding peptides. Biomed Res Int 2016:9175143. https://doi.org/10.1155/2016/9175143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang J, Ru B, Zhu P, Nie F, Yang J, Wang X, Dai P, Lin H, Guo FB, Rao N (2012) MimoDB 2.0: a mimotope database and beyond. Nucleic acids research 40(Database issue):D271–D277. https://doi.org/10.1093/nar/gkr922

    Article  CAS  PubMed  Google Scholar 

  23. Kang J, Fang Y, Yao P, Li N, Tang Q, Huang J (2019) NeuroPP: a tool for the prediction of neuropeptide precursors based on optimal sequence composition. Interdiscip Sci 11(1):108–114. https://doi.org/10.1007/s12539-018-0287-2

    Article  CAS  PubMed  Google Scholar 

  24. Li N, Kang J, Jiang L, He B, Lin H, Huang J (2017) PSBinder: a web service for predicting polystyrene surface-binding peptides. Biomed Res Int 2017:5761517. https://doi.org/10.1155/2017/5761517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ru B, tHoen PA, Nie F, Lin H, Guo FB, Huang J (2014) PhD7Faster: predicting clones propagating faster from the Ph.D.-7 phage display peptide library. J Bioinform Comput Biol 12(1):1450005. https://doi.org/10.1142/s021972001450005x

    Article  PubMed  Google Scholar 

  26. Tang Q, Nie F, Kang J, Ding H, Zhou P, Huang J (2015) NIEluter: predicting peptides eluted from HLA class I molecules. J Immunol Methods 422:22–27. https://doi.org/10.1016/j.jim.2015.03.021

    Article  CAS  PubMed  Google Scholar 

  27. Xu ZC, Feng PM, Yang H, Qiu WR, Chen W, Lin H (2019) iRNAD: a computational tool for identifying D modification sites in RNA sequence. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz358

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Liu T, Chen L, Yang J, Yin J, Zhang Y, Yun Z, Xu H, Ning L, Guo F, Jiang Y, Lin H, Wang D, Huang Y, Huang J (2019) RIscoper: a tool for RNA–RNA interaction extraction from the literature. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz044

    Article  PubMed  PubMed Central  Google Scholar 

  29. UniProt C (2015) UniProt: a hub for protein information. Nucleic acids research 43(Database issue):D204–D212. https://doi.org/10.1093/nar/gku989

    Article  CAS  Google Scholar 

  30. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95(11):5857–5864

    Article  CAS  Google Scholar 

  31. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):D200–D203. https://doi.org/10.1093/nar/gkw1129

    Article  CAS  PubMed  Google Scholar 

  32. Servant F, Bru C, Carrere S, Courcelle E, Gouzy J, Peyruc D, Kahn D (2002) ProDom: automated clustering of homologous domains. Brief Bioinform 3(3):246–251. https://doi.org/10.1093/bib/3.3.246

    Article  CAS  PubMed  Google Scholar 

  33. Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J (2015) Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res 43(10):5120–5129. https://doi.org/10.1093/nar/gkv415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyoshi T, Ito K, Murakami R, Uchiumi T (2016) Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Nat Commun 7:11846. https://doi.org/10.1038/ncomms11846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ (2005) Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell 19(3):405–419. https://doi.org/10.1016/j.molcel.2005.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schirle NT, Sheu-Gruttadauria J, MacRae IJ (2014) Structural basis for microRNA targeting. Science 346(6209):608–613. https://doi.org/10.1126/science.1258040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L (2013) The making of a slicer: activation of human Argonaute-1. Cell Rep 3(6):1901–1909. https://doi.org/10.1016/j.celrep.2013.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jee D, Yang JS, Park SM, Farmer DT, Wen J, Chou T, Chow A, McManus MT, Kharas MG, Lai EC (2018) Dual strategies for Argonaute2-Mediated biogenesis of erythroid miRNAs underlie conserved requirements for slicing in mammals. Mol Cell 69(2):265–278. https://doi.org/10.1016/j.molcel.2017.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakanishi K, Weinberg DE, Bartel DP, Patel DJ (2012) Structure of yeast Argonaute with guide RNA. Nature 486(7403):368–374. https://doi.org/10.1038/nature11211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH (2000) Cn3D: sequence and structure views for Entrez. Trends Biochem Sci 25(6):300–302

    Article  CAS  Google Scholar 

  41. Mount DW (2007) Using the basic local alignment search tool (BLAST). CSH protocols. https://doi.org/10.1101/pdb.top17

    Article  PubMed  Google Scholar 

  42. Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, Cohen-Boulakia S, Gascuel O (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 47(W1):W260–W265. https://doi.org/10.1093/nar/gkz303

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469. https://doi.org/10.1093/nar/gkn180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu Z, Tan S, Xu L, Gao L, Zhu H, Ma C, Liang X (2017) NgAgo-gDNA system efficiently suppresses hepatitis B virus replication through accelerating decay of pregenomic RNA. Antiviral Res 145:20–23. https://doi.org/10.1016/j.antiviral.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  45. Wei Q, Liao J, Yu X, Wang EJ, Wang C, Luu HH, Haydon RC, Lee MJ, He TC (2016) An NgAgo tool for genome editing: did CRISPR/Cas9 just find a competitor? Genes Dis 3(3):169–170. https://doi.org/10.1016/j.gendis.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khin NC, Lowe JL, Jensen LM, Burgio G (2017) No evidence for genome editing in mouse zygotes and HEK293T human cell line using the DNA-guided Natronobacterium gregoryi Argonaute (NgAgo). PLoS One 12(6):e0178768. https://doi.org/10.1371/journal.pone.0178768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable suggestions and comments, which have led to the improvement of this paper. In addition, thanks to Hui Yang for valuable discussions and suggestions. This work was supported by the National Natural Science Foundation of China [Grant no. 61571095] and the China Postdoctoral Science Foundation Grant [Grant no. 2019M653369].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Huang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest, financial or otherwise.

Human and Animal Rights

No animals/humans were used for studies that are the basis of this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Yu, M., Zhou, Y. et al. AGONOTES: A Robot Annotator for Argonaute Proteins. Interdiscip Sci Comput Life Sci 12, 109–116 (2020). https://doi.org/10.1007/s12539-019-00349-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-019-00349-4

Keywords

Navigation