Skip to main content
Log in

P152R Mutation Within MeCP2 Can Cause Loss of DNA-Binding Selectivity

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

MeCP2 is a protein highly expressed in the brain that participates in the genetic expression and RNA splicing regulation. MeCP2 binds preferably to methylated DNA and other nuclear corepressors to alter chromatin. MECP2 gene mutations can cause rett syndrome (RTT), a severe neurological disorder that affects around one in ten thousand girls. In this paper, Molecular Dynamics (MD) simulations were performed to scrutinize how the MeCP2 P152R mutation influences the protein binding to DNA. Also, the Umbrella Sampling technique was used to obtain the potential mean forces (PMFs) of both wild-type and mutated MeCP2 Methyl-CpG-binding domain (MBD) binding to both non-methylated and methylated DNA. P152R is a common missense mutation in MBD associated with RTT; however, there are no studies that explain how it causes protein dysfunction. The results from this study hypothesize that P152R mutation leads to MBD binding more strongly to DNA, while selectively decreasing binding affinity to methylated DNA. These provide an explanation for previous not conclusive experimental results regarding the mechanism of how this mutation affects the binding of the protein to DNA, and subsequently its effects on RTT. Furthermore, the results of this research-in-progress can be used as the basis for further investigations into the molecular basis of RTT and to potentially reveal a target for therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5mC:

5-methylcytosine

DSM-IV:

Diagnostic and statistical manual of mental disorders, fourth edition

FEP:

Free energy perturbation

GAFF:

General amber force field

∆G:

Gibbs free energy

HDAC:

Histone deacetylases

NPT:

Isothermal–isobaric

MBD:

Methyl-binding domain

MeCP2:

Methyl CpG binding protein 2

MECP2:

Methyl CpG binding protein 2 gene

MetDNA:

Methylated-DNA

MD:

Molecular dynamics

PMF:

Potential of mean force

PDB:

Protein data bank

RESP:

Restrained electrostatic potential

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuations

SeMet:

Selenomethionine

SAS:

Solvent accessibility surface

TRD:

Transcriptional repression domain

WHAM:

Weight histogram analysis method

References

  1. Dragich J, Houwink-Manville I, Schanen C (2000) Rett syndrome: a surprising result of mutation in MECP2. Hum Mol Genet 9:2365–2375

    Article  PubMed  CAS  Google Scholar 

  2. Akbarian S, Jiang Y, Laforet G (2006) The molecular pathology of Rett syndrome: synopsis and update. Neuromol Med 8:485–494

    Article  CAS  Google Scholar 

  3. Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–1147

    Article  PubMed  PubMed Central  Google Scholar 

  4. Neul JL, Fang P, Barrish J, Lane J, Caeg EB, Smith EO, Zoghbi H, Percy A, Glaze DG (2008) Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology 70:1313–1321

    Article  PubMed  CAS  Google Scholar 

  5. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  PubMed  CAS  Google Scholar 

  6. Neul JL, Zoghbi HY (2004) Rett syndrome: a prototypical neurodevelopmental disorder. Neuroscientist 10:118–128

    Article  PubMed  CAS  Google Scholar 

  7. Christodoulou J, Grimm A, Maher T, Bennetts B (2003) RettBASE: the IRSA MECP2 variation database—a new mutation database in evolution. Hum Mutat 21:466–472

    Article  PubMed  CAS  Google Scholar 

  8. Kudo S, Nomura Y, Segawa M, Fujita N, Nakao M, Schanen C, Tamura M (2003) Heterogeneity in residual function of MeCP2 carrying missense mutations in the methyl CpG binding domain. J Med Genet 40:487–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Skene PJ, Illingworth RS, Webb S, Kerr ARW, James KD, Turner DJ, Andrews R, Bird AP (2010) Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 37:457–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Collins AL, Levenson JM, Vilaythong AP, Richman R, Armstrong DL, Noebels JL, Sweatt D,J. and Zoghbi HY (2004) Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet 13:2679–2689

    Article  PubMed  CAS  Google Scholar 

  11. Caballero IM, Hendrich B (2005) MeCP2 in neurons: closing in on the causes of Rett syndrome. Hum Mol Genet 14:R19–R26

    Article  PubMed  CAS  Google Scholar 

  12. Roloff TC, Ropers HH, Nuber UA (2003) Comparative study of methyl-CpG-binding domain proteins. BMC Genom 4:1

    Article  Google Scholar 

  13. Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, Guy J, Kastan NR, Robinson ND, De Lima Alves F et al (2013) Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci 16:898–902

    Article  PubMed  CAS  Google Scholar 

  14. Ohki I, Shimotake N, Fujita N, Jee J, Ikegami T, Nakao M, Shirakawa M (2001) Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell 105:487–497

    Article  PubMed  CAS  Google Scholar 

  15. Ho KL, McNae IW, Schmiedeberg L, Klose RJ, Bird AP, Walkinshaw MD (2008) MeCP2 binding to DNA depends upon hydration at methyl-CpG. Mol Cell 29:525–531

    Article  PubMed  CAS  Google Scholar 

  16. Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19:667–678

    Article  PubMed  CAS  Google Scholar 

  17. Agarwal N, Becker A, Jost KL, Haase S, Thakur BK, Brero A, Hardt T, Kudo S, Leonhardt H, Cardoso MC (2011) MeCP2 Rett mutations affect large scale chromatin organization. Hum Mol Genet 20:4187–4195

    Article  PubMed  CAS  Google Scholar 

  18. Zou X, Ma W, Solov’yov IA, Chipot C, Schulten K (2012) Recognition of methylated DNA through methyl-CpG binding domain proteins. Nucleic Acids Res 40:2747–2758

    Article  PubMed  CAS  Google Scholar 

  19. Ballestar E, Yusufzai TM, Wolffe AP (2000) Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Biochemistry 39:7100–7106

    Article  PubMed  CAS  Google Scholar 

  20. Lemkul JA, Bevan DR (2010) Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. J Phys Chem B 114:1652–1660

    Article  PubMed  CAS  Google Scholar 

  21. Torrie GM, Valleau JP (1974) Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem Phys Lett 28:578–581. https://doi.org/10.1016/0009-2614(74)80109-0

    Article  CAS  Google Scholar 

  22. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199. https://doi.org/10.1016/0021-9991(77)90121-8

    Article  Google Scholar 

  23. Hub JS, de Groot BL, van der Spoel D (2010) g_wham—a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6:3713–3720. https://doi.org/10.1021/ct100494z

    Article  CAS  Google Scholar 

  24. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  25. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Wang Simmerling,C,B. and Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. DeLano WL (2002) The PyMOL molecular graphics system, version 1.1. Schrödinger LLC, New York

    Google Scholar 

  27. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  PubMed  CAS  Google Scholar 

  28. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  PubMed  CAS  Google Scholar 

  29. Hoover W (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  30. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  31. Parrinello M (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  32. Abraham MJ, Gready JE (2011) Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. J Comput Chem 32:2031–2040

    Article  PubMed  CAS  Google Scholar 

  33. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  34. Hess,B., Bekker,H., Berendsen,H.J.C. and Fraaije,J.G.E.M. (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18, 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H

    Article  CAS  Google Scholar 

  35. Garbuzynskiy SO, Melnik BS, Lobanov MY, Finkelstein A, V, Galzitskaya OV (2005) Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures? Proteins 60:139–147

    Article  PubMed  CAS  Google Scholar 

  36. Free A, Wakefield RI, Smith BO, Dryden DT, Barlow PN, Bird AP (2001) DNA recognition by the methyl-CpG binding domain of MeCP2. J Biol Chem 276:3353–3360

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by FAPEMIG (Grant Number: APQ-01821-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Franklin.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest in relation to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

. Wildtype of the MeCP2 MBD C-α Covariance Matrices. Obtained from 100ns of non-restrained MD simulations. (TIFF 13913 KB)

Figure S2

. P152R mutant of the MeCP2 MBD C-α Covariance Matrices. Obtained from 100ns of non-restrained MD simulations. (TIFF 13913 KB)

Figure S3

. MeCP2 MBDs C-α Root Mean Square Fluctuations (RMSF). The RMSF for the wild-type MBD is plotted in black and plotted in red for the mutated MBD. (TIFF 438 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franklin, D. P152R Mutation Within MeCP2 Can Cause Loss of DNA-Binding Selectivity. Interdiscip Sci Comput Life Sci 11, 10–20 (2019). https://doi.org/10.1007/s12539-019-00316-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-019-00316-z

Keywords

Navigation