Skip to main content

Advertisement

Log in

Computational Study of HCV p7 Channel: Insight into a New Strategy for HCV Inhibitor Design

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

HCV p7 protein is a cation-selective ion channel, playing an essential role during the life cycle of HCV viruses. To understand the cation-selective mechanism, we constructed a hexameric model in lipid bilayers of HCV p7 protein for HCB JFH-1 strain, genotype 2a. In this structural model, His9 and Val6 were key factors for the HCV cation-selective ion channel. The histidine residues at position 9 in the hexameric model formed a first gate for HCV p7 channel, acting as a selectivity filter for cations. The valines mentioned above formed a second gate for HCV p7 channel, serving as a hydrophobic filter for the dehydrated cations. The binding pocket for the channel blockers, e.g., amantadine and rimantadine, was composed of residues 20–26 in H2 helix and 52–60 in H3 helix in i + 2 monomer. However, the molecular volumes for both amantadine and rimantadine were too small for the binding pocket of HCV p7 channel. Thus, designing a compound similar with rimantadine and having much larger volume would be an effective strategy for discovering inhibitors against HCV p7 channel. To achieve this point, we used rimantadine as a structural template to search ChEMBL database for the candidates employing favorable binding affinities to HCV p7 channel. As a result, six candidates were identified to have potential to be novel inhibitors against HCV p7 channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mohd Hanafiah K, Groeger J, Flaxman AD, Wiersma ST (2013) Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology 57(4):1333–1342

    Article  PubMed  Google Scholar 

  2. Shepard CW, Finelli L, Alter MJ (2005) Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 5(9):558–567

    Article  PubMed  Google Scholar 

  3. Lauer GM, Walker BD (2001) Hepatitis C virus infection. N Engl J Med 345(1):41–52

    Article  CAS  PubMed  Google Scholar 

  4. Seeff LB (1997) Natural history of hepatitis C. Hepatology 26 (3 Suppl 1):21S-28S

    PubMed  Google Scholar 

  5. de Vicente J, Hendricks RT, Smith DB, Fell JB, Fischer J, Spencer SR, Stengel PJ, Mohr P, Robinson JE, Blake JF, Hilgenkamp RK, Yee C, Adjabeng G, Elworthy TR, Tracy J, Chin E, Li J, Wang B, Bamberg JT, Stephenson R, Oshiro C, Harris SF, Ghate M, Leveque V, Najera I, Le Pogam S, Rajyaguru S, Ao-Ieong G, Alexandrova L, Larrabee S, Brandl M, Briggs A, Sukhtankar S, Farrell R, Xu B (2009) Non-nucleoside inhibitors of HCV polymerase NS5B. Part 2: Synthesis and structure-activity relationships of benzothiazine-substituted quinolinediones. Bioorg Med Chem Lett 19(13):3642–3646

    Article  CAS  PubMed  Google Scholar 

  6. Gao M, Nettles RE, Belema M, Snyder LB, Nguyen VN, Fridell RA, Serrano-Wu MH, Langley DR, Sun JH, O’Boyle DR 2nd, Lemm JA, Wang C, Knipe JO, Chien C, Colonno RJ, Grasela DM, Meanwell NA, Hamann LG (2010) Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465(7294):96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Legrand-Abravanel F, Nicot F, Izopet J (2010) New NS5B polymerase inhibitors for hepatitis C. Expert Opin Investig Drugs 19(8):963–975

    Article  CAS  PubMed  Google Scholar 

  8. Sofia MJ, Chang W, Furman PA, Mosley RT, Ross BS (2012) Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J Med Chem 55(6):2481–2531

    Article  CAS  PubMed  Google Scholar 

  9. Zeuzem S (2008) Interferon-based therapy for chronic hepatitis C: current and future perspectives. Nat Clin Pract Gastroenterol Hepatol 5(11):610–622

    Article  CAS  PubMed  Google Scholar 

  10. Pavlovic D, Neville DC, Argaud O, Blumberg B, Dwek RA, Fischer WB, Zitzmann N (2003) The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci USA 100(10):6104–6108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones CT, Murray CL, Eastman DK, Tassello J, Rice CM (2007) Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol 81(16):8374–8383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steinmann E, Penin F, Kallis S, Patel AH, Bartenschlager R, Pietschmann T (2007) Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog 3(7):e103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wozniak AL, Griffin S, Rowlands D, Harris M, Yi M, Lemon SM, Weinman SA (2010) Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog 6(9):e1001087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. OuYang B, Xie S, Berardi MJ, Zhao X, Dev J, Yu W, Sun B, Chou JJ (2013) Unusual architecture of the p7 channel from hepatitis C virus. Nature 498(7455):521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201

    Article  CAS  PubMed  Google Scholar 

  16. Georgescu RE, Alexov EG, Gunner MR (2002) Combining conformational flexibility and continuum electrostatics for calculating pK(a)s in proteins. Biophys J 83(4):1731–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21(9):1908–1916

    Article  CAS  PubMed  Google Scholar 

  18. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz Jr KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thorner DA, Willett P, Wright PM, Taylor R (1997) Similarity searching in files of three-dimensional chemical structures: representation and searching of molecular electrostatic potentials using field-graphs. J Comput Aided Mol Des 11(2):163–174

    Article  CAS  PubMed  Google Scholar 

  21. Montserret R, Saint N, Vanbelle C, Salvay AG, Simorre JP, Ebel C, Sapay N, Renisio JG, Bockmann A, Steinmann E, Pietschmann T, Dubuisson J, Chipot C, Penin F (2010) NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J Biol Chem 285(41):31446–31461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cook GA, Opella SJ (2011) Secondary structure, dynamics, and architecture of the p7 membrane protein from hepatitis C virus by NMR spectroscopy. Biochim Biophys Acta 1808(6):1448–1453

    Article  CAS  PubMed  Google Scholar 

  23. Premkumar A, Wilson L, Ewart GD, Gage PW (2004) Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett 557(1–3):99–103

    Article  CAS  PubMed  Google Scholar 

  24. Griffin SD, Beales LP, Clarke DS, Worsfold O, Evans SD, Jaeger J, Harris MP, Rowlands DJ (2003) The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, amantadine. FEBS Lett 535(1–3):34–38

    Article  CAS  PubMed  Google Scholar 

  25. Mihm U, Grigorian N, Welsch C, Herrmann E, Kronenberger B, Teuber G, von Wagner M, Hofmann WP, Albrecht M, Lengauer T, Zeuzem S, Sarrazin C (2006) Amino acid variations in hepatitis C virus p7 and sensitivity to antiviral combination therapy with amantadine in chronic hepatitis C. Antivir Ther 11(4):507–519

    CAS  PubMed  Google Scholar 

  26. Foster TL, Verow M, Wozniak AL, Bentham MJ, Thompson J, Atkins E, Weinman SA, Fishwick C, Foster R, Harris M, Griffin S (2011) Resistance mutations define specific antiviral effects for inhibitors of the hepatitis C virus p7 ion channel. Hepatology 54(1):79–90

    Article  CAS  PubMed  Google Scholar 

  27. Castelain S, Bonte D, Penin F, Francois C, Capron D, Dedeurwaerder S, Zawadzki P, Morel V, Wychowski C, Duverlie G (2007) Hepatitis C virus p7 membrane protein quasispecies variability in chronically infected patients treated with interferon and ribavirin, with or without amantadine. J Med Virol 79(2):144–154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (no. 2016YFA0500600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingfang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, B., Pang, S., Yang, J. et al. Computational Study of HCV p7 Channel: Insight into a New Strategy for HCV Inhibitor Design. Interdiscip Sci Comput Life Sci 11, 292–299 (2019). https://doi.org/10.1007/s12539-018-0306-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-018-0306-3

Keywords

Navigation