Skip to main content

Advertisement

Log in

SEH-SDB: a semantically enriched historical spatial database for documentation and preservation of monumental heritage based on CityGML

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Cultural heritage has a great and inestimable value for communities. Unfortunately, several historical monuments are under deteriorating conditions mainly due to the lack of knowledge about their historical importance. Hence, it is necessary to provide efficient solutions to preserve these monuments. An effective approach for the preservation of cultural heritage should address two main aspects: documentation and information. The first aspect is related to methods that are used to document and digitally archive historic buildings by using appropriate materials and techniques for acquiring 3D spatial data. The second aspect aims to inform the population and policy makers about the importance of the historical heritage in a simple, effective, and interactive manner. In this paper, we propose an original approach to design a semantically enriched historical spatial database (SEH-SDB) for documentation and information of monumental heritage. First of all, a LiDAR acquisition of the historical heritage should be undertaken to capture its current condition. Then, the SEH-SDB database will be designed according to four semantic packages related to historical buildings that are (1) Components package, (2) Material package, (3) Historical package, and (4) Social package. The component package is based on the CityGML standard, which ensures a high interoperability for 3D models. The material package represents the material used in the construction of the building (wood, stone …). The historical package informs about historical elements that characterize the building and its temporal evolution. The social package aims to inform about the main social activities that may take place in the historical building. Based on the SEH-SDB, a 3D historical GIS is developed to provide rich semantic information about historical sites. At the end of this paper, a case study of a historical monument named “Ribat Banajah” in Jeddah Historical City in Saudi Arabia is presented. A digital archiving of the current state of this building is performed by using terrestrial LiDAR in combination with other classical surveying techniques (traversing, leveling, and GPS). Then, a building information model of this building is created and exported to the 3D HGIS designed for the documentation of historical buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Avrami E, Mason R, & De la Torre M, (2000). Values and heritage conservation. S. Tidwell (Ed.) Los Angeles, USA: The Getty Conservation Institute

  • Baik A, Alitany A, Boehm J, Robson S (2014) Jeddah historical building information modelling. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 1:41–47

    Article  Google Scholar 

  • Baik A, Yaagoubi R, Boehm J (2015) Integration of Jeddah historical BIM and 3D GIS for documentation and restoration of historical monument. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 40(5):29

    Article  Google Scholar 

  • Bogdanova GT, & Atanasova V (2013). Digitisation and presentation of historical materials in a virtual exhibition ‘The Image of India in Bulgaria: from the late 19th to the late 20th Cen. Digital Presentation and Preservation of Cultural and Scientific Heritage, (III), 212–218

  • Brilakis I, Lourakis M, Sacks R, Savarese S, Christodoulou S, Teizer J, Makhmalbaf A (2010) Toward automated generation of parametric BIMs based on hybrid video and laser scanning data. Adv Eng Inform 24(4):456–465

    Article  Google Scholar 

  • Chee Wei O, Siew Chin C, Majid Z, Setan H (2010) 3D documentation and preservation of historical monument using terrestrial laser scanning. Geoinformation Science Journal 10(1):73–90

    Google Scholar 

  • Costamagna, E., & Spanò, A. (2013). CityGML for architectural heritage. In Developments in multidimensional spatial data models, Springer Berlin Heidelberg, (pp. 219–237)

  • De Luca L, Busayarat C, Stefani C, Véron P, Florenzano M (2011) A semantic-based platform for the digital analysis of architectural heritage. Comput Graph 35(2):227–241

    Article  Google Scholar 

  • De Luca L, Véron P, Florenzano M (2006) Reverse engineering of architectural buildings based on a hybrid modeling approach. Comput Graph 30(2):160–176

    Article  Google Scholar 

  • De Luca L, Véron P, Florenzano M (2007) A generic formalism for the semantic modeling and representation of architectural elements. Vis Comput 23(3):181–205

    Article  Google Scholar 

  • Di Mascio, D., Pauwels, P., & De Meyer, R. (2013). Improving the knowledge and management of the historical built environment with BIM and ontologies: the case study of the book tower. In 13th International Conference on Construction Applications of Virtual Reality (pp. 427–436)

  • Dore, C., & Murphy, M. (2012, September). Integration of historic building information modeling (HBIM) and 3D GIS for recording and managing cultural heritage sites. In Virtual systems and multimedia (VSMM), 2012 18th International Conference on (pp. 369–376). IEEE

  • Gröger G, Kolbe TH, Nagel C, & Häfele KH (2012). Open geospatial consortium OGC city geography markup language (CityGML) en-coding standard. OGC 12–019, Version 2., p. 344

  • Haddad NA (2011) From ground surveying to 3D laser scanner: a review of techniques used for spatial documentation of historic sites. Journal of King Saud University-Engineering Sciences 23(2):109–118

    Article  Google Scholar 

  • Hichri N, Stefani C, De Luca L, Veron P (2013) Review of the ‘As-Built BIM’ approaches. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL XL-5/W1:107–112

    Article  Google Scholar 

  • Jayakody A, Rupasinghe L, Perera KAMS, Herath HHPM, Thennakoon TMA, & Premanath SU (2013). The development of the CityGML GeoBIM extension for real-time assessable model (integration of BIM and GIS), PNCTM; VOL. 2, JAN 2013

  • Kolbe TH (2009) Representing and exchanging 3D city models with CityGML. In: 3D geo-information sciences. Springer-Verlag, New York, NY, pp 15–31

    Chapter  Google Scholar 

  • Kolbe TH, Gröger G, & Plümer L (2005). CityGML–interoperable access to 3D city models. Geo-information for disaster management, 883–899

  • Lee G, Sacks R, Eastman CM (2006) Specifying parametric building object behavior (BOB) for a building information modeling system. Autom Constr 15(6):758–776

    Article  Google Scholar 

  • Li Y, Dong K, Li GF (2014, November) The application of BIM in the restoration of historical buildings. In: Applied mechanics and materials, vol 638, pp 1627–1635

    Google Scholar 

  • Lorenzini M. (2009). Semantic approach to 3D historical reconstruction. In Proceedings of the 3rd ISPRS International Workshop 3D-ARCH 2009: “3D Virtual Reconstruction and Visualization of Complex Architectures” Trento, Italy, 25–28 February 2009

  • Natekar D, Zhang X, Subbarayan G (2004) Constructive solid analysis: a hierarchical, geometry-based meshless analysis procedure for integrated design and analysis. Comput Aided Des 36(5):473–486

    Article  Google Scholar 

  • Mitra N, Pauly M, Wand M, Ceylan D (2013) Symmetry in 3D geometry: extraction and applications. Computer Graphics Forum 32(6):1–23

    Article  Google Scholar 

  • Patias P, Grussenmeyer P, & Hanke K (2008). Applications in cultural heritage documentation. In Advances in photogrammetry, remote sensing and spatial information sciences. 2008 ISPRS congress book (Vol. 7, pp. 363–384)

  • Philippot P (1976). Historic preservation: philosophy, criteria, guidelines. Preservation and Conservation: principles and practices, 367–374

  • Rodrigues JI, Figueiredo MJ, & Costa CP (2013). Web3DGIS for city models with CityGML and X3D. In Information Visualisation (IV), 2013 17th International Conference (pp 384–388). IEEE

  • SCTA, 2013. Historic Jeddah, the gate to Makkah. Saudi Commission For Tourism And Antiquities, Saudi Arabia, Jeddah. Retrieved June 17, 2017, from http://whc.unesco.org/en/list/1361

  • Saygi G, Agugiaro G, Hamamcıoğlu-Turan M, Remondino F (2013) Evaluation of GIS and Bim roles for the information management of historical buildings. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 1(1):283–288

    Article  Google Scholar 

  • Sunkel M, Jansen S, Wand M, Eisemann E, Seidel H-P (2011). Learning line features in 3D geometry. In: Computer Graphics Forum (Proc. Eurographics). 1–10

  • Sunkel M, Jansen S, Wand M, Seidel H-P (2013). A correlated parts model for object detection in large 3D scans. In: Computer Graphics Forum 32(2) (Proc. Eurographics), 1–10, 205, 214

  • Tyler N, Ligibel TJ, & Tyler IR (2009). Historic preservation: an introduction to its history, principles, and practice. WW Norton & Company

  • Wu TC, Lin YC, Hsu MF, Zheng NW, Chen WL (2013). Improving traditional building repair construction quality using historic building information modeling concept, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W2, XXIV International CIPA Symposium, 2–6 September 2013, Strasbourg, France

  • Wüst T, Nebiker S, Landolt R (2004) Applying the 3D GIS DILAS to archaeology and cultural heritage projects requirements and first results. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences 35(Part 5):407–412

    Google Scholar 

  • Yastikli N (2007) Documentation of cultural heritage using digital photogrammetry and laser scanning. J Cult Herit 8(4):423–427

    Article  Google Scholar 

  • Yilmaz HM, Yakar M, Gulec SA, Dulgerler ON (2007) Importance of digital close-range photogrammetry in documentation of cultural heritage. J Cult Herit 8(4):428–433

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reda Yaagoubi or Yehia Miky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaagoubi, R., Al-Gilani, A., Baik, A. et al. SEH-SDB: a semantically enriched historical spatial database for documentation and preservation of monumental heritage based on CityGML. Appl Geomat 11, 53–68 (2019). https://doi.org/10.1007/s12518-018-0238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-018-0238-y

Keywords

Navigation