Skip to main content

Advertisement

Log in

An integrated geotechnical database and GIS for 3D subsurface modelling: Application to Chennai City, India

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Subsurface characterization and clear distinction between layer boundaries in geological profiles are essential for successful completion of engineering projects. Due to limitations in accessing the vast and diverse subsurface information, efficient management of geotechnical data is of special importance. This study presents the methodology of building a digitally formatted and integrated spatial database using geotechnical data and geographic information system (GIS). The development of comprehensive geotechnical (geo)-database involves (1) Collection of borehole data from various reputed sources, (2) Validation of data in terms of accuracy and redundancy and (3) Standardizing and organizing the geotechnical information for incorporating into the database. The database is then integrated with GIS to provide the advantage of visualizing, analysing and interpreting the geotechnical information spatially. In addition, stratigraphic data stored within the spatial database is utilized for constructing three-dimensional (3D) subsurface models. A simplified approach is developed for 3D subsurface modelling with a combination of the Relational database management systems (Microsoft Access), Arc-GIS and Spatial interpolation techniques. The proposed methodology is illustrated using nearly 175 borehole data collected from various projects aimed at providing an exhaustive database and an integrated 3D environment for the Chennai City of south India for better interpretation and decision-making in regard to sustainable urban development. The study also demonstrates the application of the developed subsurface model in evaluating the effectiveness of multichannel analysis of surface wave (MASW) tests to estimate the depth to bedrock, which will be of immense use in foundation studies and in ground response analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdideh M, Bargahi D (2012) Designing a 3D model for the prediction of the top of formation in oil fields using geostatistical methods. Geocarto International 27:569–579. https://doi.org/10.1080/10106049.2012.662529

    Article  Google Scholar 

  • Anbazhagan P, Sitharam TG (2009) Spatial variability of the depth of weathered and engineering bedrock using multichannel analysis of surface wave method. Pure Appl Geophys 166:409–428. https://doi.org/10.1007/s00024-009-0450-0

    Article  Google Scholar 

  • Azarafza M, Ghazifard A (2016) Urban geology of Tabriz City: environmental and geological constraints. Adv Environ Res 5(2):95–108

    Article  Google Scholar 

  • Burrough P, McDonnell RA, Lloyd CD (2015) Principles of geographical information systems. Oxford University Press, Oxford

    Google Scholar 

  • Camp CV, Outlaw JE (1993) Constructing subsurface profiles using GIS. Adv Eng Softw 18:211–218

    Article  Google Scholar 

  • Chang Y-S, Park H-D (2004) Development of a web-based geographic information system for the management of borehole and geological data. Comput Geosci 30:887–897

    Article  Google Scholar 

  • Chesnaux R, Lambert M, Walter J, Fillastre U, Hay M, Rouleau A, Daigneault RA, Moisan A, Germaneau D (2011) Building a geodatabase for mapping hydrogeological features and 3D modeling of groundwater systems: application to the Saguenayâ-Lac-St.-Jean region, Canada. Comput Geosci 37(11):1870–1882

    Article  Google Scholar 

  • de Rienzo F, Oreste P, Pelizza S (2008) Subsurface geological-geotechnical modelling to sustain underground civil planning. Eng Geol 96:187–204

    Article  Google Scholar 

  • Deutsch CV (2002) Geostatistical reservoir modelling. Oxford University Press, Oxford

    Google Scholar 

  • Gallerini G, De Donatis M (2009) 3D modeling using geognostic data: the case of the low valley of Foglia river (Italy). Comput Geosci 35:146–164

    Article  Google Scholar 

  • Ghiglieri G, Carletti A, Da Pelo S, Cocco F, Funedda A, Loi A, Manta F, Pittalis D (2016) Three-dimensional hydrogeological reconstruction based on geological depositional model: a case study from the coastal plain of Arborea (Sardinia, Italy). Eng Geol 207:103–114

    Article  Google Scholar 

  • GSI (1999) Explanatory brochure on geological and mineral map of Tamilnadu and Pondicherry. Geological Survey of India, New Delhi

    Google Scholar 

  • He X, Koch J, Sonnenborg TO, Jørgensen F, Schamper C, Christian Refsgaard JC (2014) Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data. Water Resour Res 50(4):3147–3169

    Article  Google Scholar 

  • Ichoku C, Chorowicz J, Parrot J-F (1994) Computerized construction of geological cross sections from digital maps. Comput Geosci 20(9):1321–1327

    Article  Google Scholar 

  • IS1498 (1970) Classification and identification of soils for general engineering purposes. Bureau of Indian Standards, New Delhi

    Google Scholar 

  • Jørgensen F, Møller RR, Nebel L, Jensen N-P, Christiansen AV, Sandersen PBE (2013) A method for cognitive 3D geological voxel modelling of AEM data. Bull Eng Geol Environ 72:421–432

    Article  Google Scholar 

  • Kaufmann O, Martin T (2008) 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Comput Geosci 34(3):278–290

    Article  Google Scholar 

  • Lawrence RH (2011) The development of a geotechnical GIS-based database in Austin, TX. M. Sc. Thesis, The University of Texas

  • Lees JM (2000) Geotouch: software for three and four dimensional GIS in the earth sciences. Comput Geosci 26(7):751–761

    Article  Google Scholar 

  • Lemon AM, Jones NL (2003) Building solid models from boreholes and user-defined cross-sections. Comput Geosci 29(5):547–555

    Article  Google Scholar 

  • Longley PA, Goodchild M, Maguire DJ, Rhind DW (2010) Geographic information systems and science. John Wiley & Sons, New York

    Google Scholar 

  • Lu GY, Wong DW (2008) An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci 34(9):1044–1055

    Article  Google Scholar 

  • Marache A, Dubost J, Breysse D, Denis A, Dominique S (2009) Understanding subsurface geological and geotechnical complexity at various scales in urban soils using a 3D model. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 3:192–205. https://doi.org/10.1080/17499510802711994

    Google Scholar 

  • McCarthy JD, Graniero PA (2006) A GIS-based borehole data management and 3D visualization system. Comput Geosci 32(10):1699–1708

    Article  Google Scholar 

  • National Remote Sensing Centre Hyderabad India (2015) Digital elevation model (30 m resolution). Cartosat-1 satellite. http://bhuvan.nrsc.gov.in/data/download/index.php. Accessed 19 November 2015

  • Pegah E, Liu H (2016) Application of near-surface seismic refraction tomography and multichannel analysis of surface waves for geotechnical site characterizations: a case study. Eng Geol 208:100–113

    Article  Google Scholar 

  • Penggen C, Jianya G, Yandong W, Haigang S (1999) A design of three-dimensional spatial data model and its data structure in geological exploration engineering. Geo-spatial Information Science 2:78–85. https://doi.org/10.1007/bf02826723

    Article  Google Scholar 

  • Ryden N (2004) Surface wave testing of pavements. Dissertation, Lund University

  • Schokker J, Schokker P, de Beer H, Eriksson I, Kallio H, Kearsey T, Pfleiderer S, Seither A (2017) 3D urban subsurface modelling and visualisation. TU1206 COST Sub-Urban WG2 Report. http://sub-urban.squarespace.com/new-index/#publications. Accessed 5 August 2017

  • Simmons JV, Maconochie AP, Larkin BJ, Green DR (2013) CoalLog: the standard for collection, recording, storage and transfer of geological and geotechnical data for the Australian coal industry. Appl Earth Sci 122:30–35. https://doi.org/10.1179/1743275813y.0000000032

    Article  Google Scholar 

  • Stoter J, Brink L, Beetz J, Ledoux H, Reuvers M, Janssen P, Penninga F, Vosselman G, Oude Elberink S (2013) Three-dimensional modeling with national coverage: case of The Netherlands. Geo-spatial Information Science 16(4):267–276

    Article  Google Scholar 

  • Strassberg G, Maidment DR, Jones NL (2007) A geographic data model for representing ground water systems. Ground Water 45:515–518

    Article  Google Scholar 

  • Sun C-G, Kim H-S, Chung C-K, Chi H-C (2014) Spatial zonations for regional assessment of seismic site effects in the Seoul metropolitan area. Soil Dyn Earthq Eng 56:44–56

    Article  Google Scholar 

  • Tame C, Cundy AB, Royse KR, Smith M, Moles NR (2013) Three-dimensional geological modelling of anthropogenic deposits at small urban sites: a case study from Sheepcote Valley, Brighton, UK. J Environ Manag 129:628–634

    Article  Google Scholar 

  • Thoang TT, Giao PH (2015) Subsurface characterization and prediction of land subsidence for HCM City, Vietnam. Eng Geol 199:107–124

    Article  Google Scholar 

  • Touch S, Likitlersuang S, Pipatpongsa T (2014) 3D geological modelling and geotechnical characteristics of Phnom Penh subsoils in Cambodia. Eng Geol 178:58–69

    Article  Google Scholar 

  • Trupti S, Srinivas KNSSS, Pavan Kishore P, Seshunarayana T (2012) Site characterization studies along coastal Andhra Pradesh-India using multichannel analysis of surface waves. J Appl Geophys 79:82–89

    Article  Google Scholar 

  • Turner AK (2006) Challenges and trends for geological modelling and visualisation. Bull Eng Geol Environ 65:109–127

    Article  Google Scholar 

  • Uma Maheswari R, Boominathan A, Dodagoudar GR (2010) Seismic site classification and site period mapping of Chennai City using geophysical and geotechnical data. J Appl Phys 72:152–168

    Google Scholar 

  • Wang G, Li R, Carranza EJM, Zhang S, Yan C, Zhu Y, Qu J, Hong D, Song Y, Han J, Ma Z, Zhang H, Yang F (2015) 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China. Ore Geol Rev 71:592–610

    Article  Google Scholar 

  • Wan-Mohamad WNS, Abdul-Ghani AN (2011) The use of geographic information system (GIS) for geotechnical data processing and presentation. Procedia Engineering 20:397–406

    Article  Google Scholar 

  • Whiteaker TL, Jones N, Strassberg G, Lemon A, Gallup D (2012) GIS-based data model and tools for creating and managing two-dimensional cross sections. Comput Geosci 39:42–49

    Article  Google Scholar 

  • Yeniceli S, Ozcelik M (2016) Practical application of 3D visualization using geotechnical database: a case study karsiyaka (Izmir) settlement area (Turkey). Journal of the Indian Society of Remote Sensing 44:129–134. https://doi.org/10.1007/s12524-015-0474-0

    Article  Google Scholar 

  • Zhu L, Wu X, Liu X, Shang J (2004) Reconstruction of 3D strata model based on borehole data. Geography and Geo-Information Science 20(3):26–30 (Chinese)

    Google Scholar 

  • Zhu L, Zhang C, Li M, Pan X, Sun J (2012) Building 3D solid models of sedimentary stratigraphic systems from borehole data: an automatic method and case studies. Eng Geol 127:1–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Priya B..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

B., D.P., Dodagoudar, G.R. An integrated geotechnical database and GIS for 3D subsurface modelling: Application to Chennai City, India. Appl Geomat 10, 47–64 (2018). https://doi.org/10.1007/s12518-018-0202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-018-0202-x

Keywords

Navigation