Skip to main content
Log in

The role of organominerals in the lithification of calcareous lumps within the intertidal sediments of Bubiyan Island, Kuwait, Arabian Gulf

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Calcareous lumps of varying sizes and shapes are scattered on the landward part of the muddy intertidal flat along the southern coast of Bubiyan Island, northeast Kuwait. Two main lithotypes are recognized, namely, hard sandy crust fragments which are mostly formed of porous calcareous grainstone (bio-oosparite) and lithified muddy lumps that consist of calcareous wackestone (bio-micrite). They were originally eroded from the soft tidal flat sediments then lithified. Petrographic, mineralogical, and SEM/EDS examinations revealed that lithification of these calcareous lumps is attributed to cementation by biologically influenced organominerals, mainly high magnesium calcite and aragonite. The conditions responsible for the precipitation of these organominerals as well as variation in their mineralogy within each type of these calcareous lumps were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abou-Seida MM, Gopalakrishnan TC (1980) Analysis of waves and currents for planning a multipurpose fishing harbor. Technical report KISR 3130-FRS- 226. Kuwait Institute for Scientific Research, Kuwait

    Google Scholar 

  • Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15:959–970

    Article  Google Scholar 

  • Aizenberg J, Hanson J, Ilan M, Leiserowitz L, Koetzle TF, Addadi L, Weiner S (1995) Morphogenesis of calcitic sponge spicules-a role for specialized proteins interacting with growing crystals. FASEB J 9:262–268

    Google Scholar 

  • Al-Zamel AZ (1983) Geology and oceanography of recent sediments of Jazirat Bubiyan and Ras As-Sabiyah, Kuwait, Arabian Gulf. Unpublished PhD Thesis, University of Sheffield, UK

  • Arp G, Reimer A, Reitner J (2003) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake Indonesia. J Sedimentary Res 73:105–127

    Article  Google Scholar 

  • Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185:131–145

    Article  Google Scholar 

  • Bazylinski DA, Frankel RB (2003) Biologically controlled mineralization in prokaryotes. Rev. Miner Geochem 54:217–247

    Article  Google Scholar 

  • Ben Chekroun K, Rodriguez-Navarro C, Gonzalez-Munoz MT, Arias JM, Cultrone G, Rodriguez-Gallego M (2004) Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: implications for recognition of bacterial carbonates. J Sediment Res 74:868–876

    Article  Google Scholar 

  • Bosak T, Newman DK (2005) Microbial kinetic controls on calcite morphology in supersaturated solutions. J Sediment Res 75:190–199

    Article  Google Scholar 

  • Braissant O, Cailleau G, Dupraz C, Verrecchia EP (2003) Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sea Res 73:485–490

    Google Scholar 

  • Brehm U, Krumbein WE, Palinska KA (2006) Biomicrospheres generate ooids in the laboratory. Geomicrobiol J 23:545–550

    Article  Google Scholar 

  • Buczynski C, Chafetz HS (1991) Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. J Sediment Petrol 61:226–233

    Article  Google Scholar 

  • Bundeleva IA, Shirokova LS, Bénézeth P, Pokrovsky OS, Kompantseva EI, Balor S (2012) Calcium carbonate precipitation by anoxygenic phototrophic bacteria. Chem Geol 291:116–131

    Article  Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. PALAIOS 2:241–254

    Article  Google Scholar 

  • Campbell K (2006) Hydrocarbon seeps and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeogr Palaeoclimatol Palaeoecol 232:362–407

    Article  Google Scholar 

  • Castanier S, Maurin A, Pherthuisot JP (1989) Production bacterienne experimentale de corpuscules carbonates, spheroidaux a structure fibro-radiare. Reflexions sur la definition des ooides. Bull Soc Geol Fr 3:589–595

    Google Scholar 

  • Castanier S, Perthuisot JP, Matrat M, Morvan JY (1999) The salt ooids of Berre salt works (Bouches du Rhône, France): the role of bacteria in salt crystallisation. Sediment Geol 125:9–21

    Article  Google Scholar 

  • Chafetz HS (1986) Marine peloid: a product of bacterially induced precipitation of calcite. J Sediment Petrol 56:812–817

    Google Scholar 

  • Chave KE (1954) Aspects of the biogeochemistry of magnesium, 2. Calcareous Sediments Rocks J Geol 62:587–599

    Google Scholar 

  • Chave KE (1952) A solid solution between calcite and dolomite. J Geol 60:190–192

    Article  Google Scholar 

  • Chen DF, Liu Q, Zhang Z, Cathles LM III, Roberts HH (2007) Biogenic fabrics in seep carbonates from an active gas vent site in Green Canyon Block 238, Gulf of Mexico. Mar Petrol Geol 24:313–320

    Article  Google Scholar 

  • Cifci G, Dondurur D, Ergun M (2002) Sonar and high resolution seismic studies in the eastern Black Sea. Turk J Earth Sci 11:61–81

    Google Scholar 

  • Civil Aviation of Kuwait (2009) Meteorological data and information. https://link.springer.com/chapter/10.1007%2F978-94-007-5332-7_41

  • Decho AW (2010) Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecol Eng 36:137–144

    Article  Google Scholar 

  • Dravis J (1979) Rapid and widespread generation of recent oolitic hardgrounds on a high energy Bahamian platform, Eleuthera Bank, Bahamas. J Sediment Res 49:195–207

    Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PY (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev 96:141–162

    Article  Google Scholar 

  • Dupraz C, Reid RP, Visscher PT (2011) Microbialites, modern. In: Reitner J, Thiel V (eds) Encyclopedia of Geobiology. Springer, Encyclopedia of Earth Science Series. Berlin, pp 653–654

    Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    Article  Google Scholar 

  • Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765

    Article  Google Scholar 

  • Ercole C, Cacchio P, Botta AL, Centi V, Lepidi A (2007) Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides. Microsc Micoanal 13:42–50

    Article  Google Scholar 

  • Feng D, Chen D, Roberts HH (2009) Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Mar Pet Geol 26:1190–1198

    Article  Google Scholar 

  • Fuchs W, Gattinger TE, Hozer HF (1968) Explantory note to the synoptic geological map of Kuwait. Vienna Geological Survey, Austria, 87 p

    Google Scholar 

  • Gerdes G, Dunajtschik-Piewak R, Riege H, Taher AG, Krumbein WE, Reineck HE (1994) Structural diversity of biogenic carbonates particles in microbial mats. Sedimentology 41:1273–1284

    Article  Google Scholar 

  • Goldsmith JR, Graf DL, Joensuu OI (1955) The occurrence of magnesian calcites in nature. Geochim Cosmochim Acta 7:212–230

    Article  Google Scholar 

  • Han Z, Yan H, Zhou S, Zhao H, Zhang Y, Zhang N, Yao C, Zhao L, Han C (2013) Precipitation of calcite induced by Synechocystis sp. PCC6803. World J Microbiol Biotechnol 29(10):1801–1811

    Article  Google Scholar 

  • Han Z, Zhuang D, Yan H, Zhao H, Sun B, Li D, Sun Y, Hu W, Xuan Q, Chen J, Xiu Y (2017) Thermogravimetric and kinetic analysis of thermal decomposition characteristics of microbial calcites induced by cyanobacteria Synechocystis sp. PCC6803. J Therm Anal Calorim 127(2):1371–1379

    Article  Google Scholar 

  • Jones B, Peng X (2012) Amorphous calcium carbonate associated with biofilms in hot spring deposits. Sediment Geol 269:58–68

    Article  Google Scholar 

  • Kenter JAM, Harris TPM, Porta GD (2005) Steep microbial boundstone-dominated platform margins examples and implications. Sediment Geol 178:5–30

    Article  Google Scholar 

  • Khadkikar AS, Rajshekhar C (2003) Microbial cements in Holocene beachrocks of south Andaman Islands, Bay of Bengal. Curr Sci 84:933–939

    Google Scholar 

  • Khalaf FI (1988) Quaternary calcareous hard rocks and the associated sediments in the intertidal and offshore zone of Kuwait. Mar Geol 80:1–27

    Article  Google Scholar 

  • Khalaf FI, Al-Shamlan A, Al-Sayed MI (1986) Petrography and diagenesis of quaternary Oolitic sediments in northern Kuwait-Arabian gulf. J Univ Kuwait (Sci) 13:111–125

    Google Scholar 

  • Khalaf FI, Milliman JD, Durffel EM (1987) Submarine limestone in the near shore environment of Kuwait, northern Arabian gulf. Sedimentology 34:67–75

    Article  Google Scholar 

  • KISR (2005) Bubiyan Island Project. Final reports. Kuwait Institute Sci Res, Kuwait

  • Knorre H, Krumbein WE (2000) Bacterial calcification. In: Riding EE, Awramik SM (eds) Microbial sediments. Springer-Verlag, Berlin, pp 25–31

    Chapter  Google Scholar 

  • Kranz SA, Wolf-Gladrow D, Nehrke G, Langer G, Rost B (2010) Calcium carbonate precipitation induced by the growth of the marine cyanobacterium Trichodesmium. Limnol Oceanogr 55:2563–2569

    Article  Google Scholar 

  • Krumbein WE (1979) Phototrophic and chemoorganotrophic activity of bacteria and algae related to beach rock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiol J 1:139–203

    Article  Google Scholar 

  • Krumbein WE, Cohen Y, Shilo M (1977) Solar lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnol Oceanogr 22:635–656

    Article  Google Scholar 

  • Lavoie D, Pinet N, Duchesne M, Bolduc A, Larocque R (2010) Methane-derived authigenic carbonates from active hydrocarbon seeps of the St. Lawrence estuary, Canada. Mar Petrol Geol 27:1262–1272

    Article  Google Scholar 

  • Lian B, Hu Q, Chen J, Ji J, Teng HH (2007) Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim Cosmochim Acta 70:5522–5535

    Article  Google Scholar 

  • Lopez-Garcia P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake van, Turkey. Extremophiles 9:263–274

    Article  Google Scholar 

  • Loste E, Wilson RM, Seshadri R, Meldrum FC (2003) The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. J Cryst Growth 254:206–218

    Article  Google Scholar 

  • Lowenstam HA (1954) Factors affecting aragonite: calcite ratios in carbonate secreting marine organisms. J Geol 62:284322

    Google Scholar 

  • Lumsden DN (1979) Discrepancy between thin section and X-ray estimates of dolomite in limestone. J Sediment Petrol 49:429–436

    Google Scholar 

  • Mansour AS, Sassen R (2011) Mineralogical and stable isotopic characterization of authigenic carbonate from a hydrocarbon seep site, Gulf of Mexico slope: possible relation to crude oil degradation. Mar Geol 281:59–69

    Article  Google Scholar 

  • Martinez RE, Gardés E, Pokrovsky OS, Schott J, Oelkers EH (2010) Do photosynthetic bacteria have a protective mechanism against carbonate precipitation at their surfaces? Geochim Cosmochim Acta 74:1329–1337

    Article  Google Scholar 

  • Mazzini A, Ivanov MK, Parnell J, Stadnitskaia A, Cronin BT, Poludetkina E, Mazurenko L, van Weering TEC (2004) Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids. Mar Geol 212:153–181

    Article  Google Scholar 

  • Merz M (1992) The biology of carbonate precipitation by cyanobacteria. Facies 26:81–102

    Article  Google Scholar 

  • Obst M, Dynes JJ, Lawrence JR, Swerhone GDW, Benzerara K, Karunakaran C, Kaznatcheev K, Tyliszczak T, Hitchcock AP (2009) Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process. Geochimica et Cosmochimica Acta 73(14):4180–4198

  • Peckmann J, Reimer A, Luth U, Luth C, Hansen BT, Heinicke C, Hoefs J, Reitner J (2001) Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol 177:129–150

    Article  Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467

    Article  Google Scholar 

  • Pedley M (2013) The morphology and function of thrombolitic calcite precipitating biofilms: a universal model derived from freshwater mesocosm experiments. Sedimentology 61:22–40

    Article  Google Scholar 

  • Perry RS, Mcloughlin N, Lynne BY, Sephton MA, Oliver JD, Perry CC, Campbell K, Engel MH, Farmer JD, Brasier MD, Staley JT (2007) Defining biominerals and organominerals: direct and indirect indicators of life. Sediment Geol 201:157–179

    Article  Google Scholar 

  • Picha F, Saleh AM (1977) Quaternary sediments in Kuwait. J Univ Kuwait (Sci) 4:169–184

    Google Scholar 

  • Planavsky N, Reid RP, Lyons TW, Marshall KL, Visscher PT (2009) Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology 7:566–576

    Article  Google Scholar 

  • Riding R (2006) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology 4:299–316

    Article  Google Scholar 

  • Roberts HH, Carney RS (1997) Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope. Econ Geol 92:863–879

    Article  Google Scholar 

  • Rodriguez-Blanco JD, Shaw S, Benning LG (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nano 3:265–271

    Google Scholar 

  • Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, Gonzales-Munoz MT, Rogriguez-Gallego M (2007) Bacterially mediated mineralization of vaterite. Geochim Cosmochim Acta 71:1197–1213

    Article  Google Scholar 

  • Shinn EA (1969) Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology 12:109–144

    Article  Google Scholar 

  • Tang D, Shi X, Jiang G, Zhang W (2013) Microfabrics in Mesoproterozoic microdigitate stromatolites: evidence of biogenicity and organomineralization at micron and nanometer scales. PALAIOS 28(3):178–194

    Article  Google Scholar 

  • Tang DJ, Shi XY, Jiang GQ (2014) Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites. Precambrian Res 248:1–16

    Article  Google Scholar 

  • Taylor JCM, Illing LV (1969) Holocene intertidal calcium carbonate cementation, Qatar, Persian Gulf. Sedimentology 12:69–107

    Article  Google Scholar 

  • Tekin E, Ayyildiz T, Gündoğan I, Orti F (2007) Modern halolites (halite oolites) in the Tuz Gölü, Turkey. Sediment Geol 195:101–112

    Article  Google Scholar 

  • Trichet J, Defarge C (1995) Non-biologically supported organomineralization. Bull Inst Oceanogr Monaco, N8 Special 14:203–236

    Google Scholar 

  • Vasconcelos C, McKenzie JA (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res 67:378–390

    Google Scholar 

  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tiens AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222

    Article  Google Scholar 

  • Visscher PT, Pamela Reid R, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28:919–922

    Article  Google Scholar 

  • Visscher PT, Reid RP, Bebout BM, Hoeft SE, Macintyre IG, Thompson JA Jr (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am Mineral 83:1482–1493

    Article  Google Scholar 

  • Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes and products. Palaeogeogr Palaeoclimatol Palaeoecol 219:87–100

    Article  Google Scholar 

  • Wierzchos J, Ascaso C, Mckay CP (2006) Endolithic cyanobacteria in halite rocks from the Hyperarid Core of the Atacama Desert. Astrobiology 6:415–422

    Article  Google Scholar 

  • Zhang W, Shi X, Jiang G, Tang D, Wang X (2015) Mass-occurrence of oncoids at the Cambrian series 2–series 3 transition: implications for microbial resurgence following an early Cambrian extinction. Gondwana Res 28(1):432–450

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support provided by the Nanoscopy Science Center (NSC) of Kuwait University. This study was partially supported under SAF Grant Number GS01/05, GS03/01. Thanks are extended to the XRD and XRF laboratories of the Department of Earth and Environmental Sciences. Special thanks are also extended to Mr. Nabil Basily, Mr. Yousef Abdullah, and Mr. Hisham Mahmoud for their help with field work and thin section preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arafat A. AlShuaibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlShuaibi, A.A., Khalaf, F.I. The role of organominerals in the lithification of calcareous lumps within the intertidal sediments of Bubiyan Island, Kuwait, Arabian Gulf. Arab J Geosci 10, 390 (2017). https://doi.org/10.1007/s12517-017-3182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3182-y

Keywords

Navigation