Skip to main content

Advertisement

Log in

Sub-basin scale spatial variability of soil properties in Central Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Scientific information on the spatial variability of soil properties is essential for making sustainable soil and environmental management decisions. The spatial variation of soil electrical conductivity (EC), pH, carbonates, gypsum, gravel, clay, silt and sand in the Gavkhooni sub-basin, Central Iran was studied employing conventional statistics, geostatistics and a geographical information system (ArcGIS). By the method of random sampling within blocks, the study area was divided into 100 blocks of 6×6 km2 and in each block surface, samples (0–10 cm) were taken randomly. The EC content showed strong variation (CV>100%), pH and carbonates exhibited weak variation (CV<10%) and the other properties showed moderate variation. Soil parameters such as gravel, silt and gypsum were best fitted by a Gaussian model, sand and carbonates fitted best with a Spherical model and the remaining soil parameters were fitted to the Exponential model. Based on the models, the spatial correlation (range) of the soil properties greatly changed from 5.6 (sand) to 74.5 km (EC). Soil pH, EC, carbonates and clay had strong spatial dependence whereas the other properties had moderate spatial dependence. The spatial distribution maps were prepared using ordinary kriging interpolation. Comparison of the results using statistical methods indicated that kriging technique had satisfactory accuracy in characterizing the spatial variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agterberg FP (1984) Trend surface analysis. In: Gaile GL, Willmott CJ (eds) Spatial statistics and models. Reidel, Dordrecht, pp 147–171

    Chapter  Google Scholar 

  • Allison LE, Moodie CD (1965) Carbonates. In: Black CA, Evans DD, Ensminger LE, White JL, Clark FC (eds) Methods of soil analysis, part 2. American Society of Agronomy, Madison, pp 1379–1396

    Google Scholar 

  • Artieda O, Herrero J, Drohan PJ (2006) Refinement of the differential water loss method for gypsum determination in soils. Soil Sci Soc Am J 70:1932–1935. doi:10.2136/sssaj2006.0043N

    Article  Google Scholar 

  • Ayoubi S, Zamani SM, Khormali F (2007) Spatial variability of some soil properties for site specific farming in northern Iran. Int J Plant Prod 2:225–236

    Google Scholar 

  • Brejda J, Moorman J, Smith TB, Karlen JL, Allan DL, Dao TH (2000) Distribution and variability of surface soil properties at a regional scale. Soil Sci Soc Am J 64:974–982. doi:10.2136/sssaj2000.643974x

    Article  Google Scholar 

  • Burgess TM, Webster R (1980) Optimal interpolation and isarithmic mapping of soil properties: II. The semi-variogram and punctual kriging. J Soil Sci 31:315–331. doi:10.1111/j.1365-2389.1980.tb02084.x

    Article  Google Scholar 

  • Crave A, Gascuel-Odoux C (1997) The influence of topography on time and space distribution of soil surface water content. Hydrol Process 11:203–210. doi:10.1002/(SICI)1099-1085(199702)11:2<203:AID-HYP432>3.0.CO;2-K

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Francisca LG, Montserrat JE, Silvia A, Alfonso GF, Manuel SO, Luis GT (2002) Spatial variability of agricultural soil parameters in southern Spain. Plant Soil 246:97–105. doi:10.1023/A:1021568415380

    Article  Google Scholar 

  • Fu W, Tunney H, Zhang C (2010) Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Till Res 106:185–193. doi:10.1016/j.still.2009.12.001

    Article  Google Scholar 

  • Gee GW, Bauder JM (1986) Particle-size analysis. Methods of soil analysis, part 1. American Society of Agronomy, Madison, pp 383–411

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York (US)

    Google Scholar 

  • Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45

    Article  Google Scholar 

  • Krige D (1966) Two dimensional weight moving average trend surfaces for ore evaluation. J S Afr I Min Metall 66:13–38

    Google Scholar 

  • Lean EO (1982) Soil pH and lime requirement. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. American Society of Agronomy, Madison, pp 199–224

    Google Scholar 

  • Liu TL, Juang KW, Lee DY (2006) Interpolating soil properties using kriging combined with categorical information of soil maps. Soil Sci Soc Am J 70:1200–1209. doi:10.2136/sssaj2005.0126

    Article  Google Scholar 

  • Lopez-Granados F, Jurado-Exposito M, Atenciano S, Garcia-Ferrer A, De la Orden MS, Garcia-Torres L (2002) Spatial variability of agricultural soil parameters in southern Spain. Plant Soil 246:97–105. doi:10.1023/A:1021568415380

    Article  Google Scholar 

  • Momtaz HR, Jafarzadeh AA, Torabi H, Oustan S, Samadi A, Davatgar N, Gilkes RJ (2009) An assessment of the variation in soil properties within and between landform in the Amol region, Iran. Geoderma 149:10–18. doi:10.1016/j.geoderma.2008.11.016

    Article  Google Scholar 

  • Mousavifard SM, Momtaz H, Sepehr E, Davatgar N, Rasouli Sadaghiani MH (2012) Determining and mapping some soil physico-chemical properties using geostatistical and GIS techniques in the Naqade region. Iran Arch Agron Soil Sci:1–17. doi:10.1080/03650340.2012.740556

  • Nael M, Khademi H, Hajabbasi MA (2004) Response of soil quality indicators and their spatial variability to land degradation in Central Iran. Appl Soil Ecol 27:221–232. doi:10.1016/j.apsoil.2004.05.005

    Article  Google Scholar 

  • Nagy NM, Kónya J (2007) Study of pH-dependent charges of soils by surface acid–base properties. J Colloid Interface Sci 305:94–100. doi:10.1016/j.jcis.2006.09.040

    Article  Google Scholar 

  • Nielsen DR, Wendroth O (2003) Spatial and temporal statistics—sampling field soils and their vegetation. Catena Verlag GMBH, Reiskirchen, German

    Google Scholar 

  • Niemann KO, Edgell MCR (1993) Preliminary analysis of spatial and temporal distribution of soil moisture on a deforested slope. Phys Geogr 14:449–464

    Google Scholar 

  • Quine TA, Zhang Y (2002) An investigation of spatial variation in soil erosion, soil properties and crop production within an agricultural field in Devon, United Kingdom. J Soil Water Conserv 57:50–60

    Google Scholar 

  • Rhoades JD (1982) Soluble salts. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. American Society of Agronomy, Madison, pp 167–179

    Google Scholar 

  • Schloeder CA, Zimmerman NE, Jacobs MJ (2001) Comparison of methods for interpolating soil properties using limited data. Soil Sci Soc Am J 65:470–479. doi:10.2136/sssaj2001.652470x

    Article  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-NRCS, Washington, DC

    Google Scholar 

  • Sun B, Zhou S, Zhao Q (2003) Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma 115:85–99. doi:10.1016/S0016-7061(03)00078-8

    Article  Google Scholar 

  • Tesfahunegn GB, Tamene L, Vlek PLG (2011) Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia. Soil Till Res 117:124–139. doi:10.1016/j.still.2011.09.005

    Article  Google Scholar 

  • Triantafilis J, Odeh IOA, McBratney AB (2001) Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Sci Soc Am J 65:869–878. doi:10.2136/sssaj2001.653869x

    Article  Google Scholar 

  • Utset A, Ruiz ME, Herrera J, Ponce de Leon D (1998) A geostatistical method for soil salinity sample site spacing. Geoderma 86:143–151. doi:10.1016/S0016-7061(98)00037-8

    Article  Google Scholar 

  • Vieira SR, Paz-Gonzalez A (2003) Analysis of the spatial variability of crop yield and soil properties in small agricultural plots. Bragantia 62:127–138. doi:10.1590/S0006-87052003000100016

    Article  Google Scholar 

  • Webster R, Burgess TM (1980) Optimal interpolation and isarithmic mapping of soil properties: III changing drift and universal kriging. Eur J Soil Sci 31:505–521

    Article  Google Scholar 

  • Webster R, Oliver MA (2001) Geostatistics for environmental scientists (statistics in practice). Wiley, Chichester

    Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley, Chichester

    Book  Google Scholar 

  • Yang P, Mao R, Shao H, Gao Y (2009) The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain, China. C R Biol 332:558–566. doi:10.1016/j.crvi.2009.01.004

    Article  Google Scholar 

  • Zhao J, Dong Y, Xie X, Li X, Zhang X, Shen X (2011) Effect of annual variation in soil pH on available soil nutrients in pear orchards. Acta Ecol Sinica 31:212–216. doi:10.1016/j.chnaes.2011.04.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahareh Aghasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghasi, B., Jalalian, A., Khademi, H. et al. Sub-basin scale spatial variability of soil properties in Central Iran. Arab J Geosci 10, 136 (2017). https://doi.org/10.1007/s12517-017-2921-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-2921-4

Keywords

Navigation