Skip to main content
Log in

Local impact of dust storms around a suburban building in arid and semi-arid regions: numerical simulation examples from Dubai and Riyadh, Arabian Peninsula

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Dust storms are common in arid and semi-arid regions, e.g., the Arabian Peninsula, where undisturbed wind can either weather the rocks and transport the grains for kilometers over the landscape or even overseas, or form dunes and ripples. We used a multiphase Eulerian–Lagrangian computational fluid dynamics model to investigate the impact of dust storms in the form of density current on a 10 × 10-m building. This numerical investigation particularly applies to the suburbs of metropolis, consisting of peripheral neighborhoods of meter-scale buildings that, as suggested by our results, can strongly affect the path of the storm before impacting the Downtown. Our results of flow-building interaction on pulsating (CASE 1) versus sustained (CASE 2, reference) and long-lived (CASE 3) storm show a strong amplification of flow dynamic pressure up to a factor of about 14 in streamwise direction and a heavy grain accumulation of about 800 kg around the building. With respect to reference sustained storm, the results show a more intense pressure amplification up to about 12 for slower (CASE 4) or coarser (CASE 5) storm, but a less intense amplification up to about 3 for more dilute storm (CASE 6) in transverse direction. Maximum grain accumulation around the building is of about 4,300 kg (55 % is on building front) for coarser storm, whereas high fog in the building rear occurs for more dilute storm. These results can be useful when assessing the impact of dust storms against buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almeida MP, Andrade JS Jr, Herrmann HJ (2006) Aeolian transport layer. Phys Rev Lett 96:018001

    Article  Google Scholar 

  • Andreotti B, Fourrière A, Ould-Kaddour F, Murray B, Claudin P (2009) Giant aeolian dune size determined by the averaged depth of the atmospheric boundary layer. Nature 457:1120–1123

    Article  Google Scholar 

  • Ansys Fluent 15 2014 Theory and user’s guide. Ansys Corporation

  • Bagnold R.A 1941 The physics of blown sand and desert dunes. Methuen

  • Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Annu Rev Fluid Mech 42:111–133

    Article  Google Scholar 

  • Blocken B, Carmeliet J (2007) Validation of CFD simulations of wind-driven rain on a low-rise building facade. Build Environ 42:2530–2548

    Article  Google Scholar 

  • Costa A, Folch A, Macedonio G, Giaccio B, Isaia R, Smith VC (2012) Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption. Geophys Res Lett 39:L10310

    Article  Google Scholar 

  • Crowe CT (2000) On models for turbulence modulation in fluid-particle flows. Int J Multiphase Flow 26:719–727

    Article  Google Scholar 

  • Dellino P, Isaia R, Veneruso M (2004) Turbulent boundary layer shear flows as an approximation of base surges at Campi Flegrei (Southern Italy). J Volcanol Geotherm Res 133:211–228

    Article  Google Scholar 

  • Dellino P, Buettner R, Dioguardi F, Doronzo DM, La Volpe L, Mele D, Sonder I, Sulpizio R, Zimanowski B (2010) Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard. Earth Planet Sci Lett 295:314–320

    Article  Google Scholar 

  • Dioguardi F, Dellino P, Mele D (2014) Integration of a new shape-dependent particle-fluid drag coefficient law in the multiphase Eulerian–Lagrangian code MFIX-DEM. Powder Technol 260:68–77

    Article  Google Scholar 

  • Doronzo DM (2010) Could the Twin Towers collapse teach the interaction of dilute pyroclastic density currents with buildings? Nat Hazards 55:177–179

  • Doronzo DM (2013) Aeromechanic analysis of pyroclastic density currents past a building. Bull Volcanol 75:684–689

    Article  Google Scholar 

  • Doronzo DM, Dellino P (2011) Interaction between pyroclastic density currents and buildings: numerical simulation and first experiments. Earth Planet Sci Lett 310:286–292

    Article  Google Scholar 

  • Doronzo DM, Valentine GA, Dellino P, de Tullio MD (2010) Numerical analysis of the effect of topography on deposition from dilute pyroclastic density currents. Earth Planet Sci Lett 300:164–173

    Article  Google Scholar 

  • Doronzo DM, de Tullio MD, Dellino P, Pascazio G (2011) Numerical simulation of pyroclastic density currents using locally refined Cartesian grids. Comput Fluids 44:56–67

    Article  Google Scholar 

  • Elghobashi S, Truesdell GC (1993) On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: turbulence modification. Phys Fluids 5:1790–1801

    Article  Google Scholar 

  • Engelstaedter S, Tegen I, Washington R (2006) North African dust emissions and transport. Earth Sci Rev 79:73–100

    Article  Google Scholar 

  • Evan AT, Foltz GR, Zhang D, Vimont DJ (2011) Influence of African dust on ocean–atmosphere variability in the tropical Atlantic. Nat Geosci 4:762–765

    Article  Google Scholar 

  • Folch A (2012) A review of tephra transport and dispersal models: evolution, current status, and future perspectives. J Volcanol Geotherm Res 235–236:96–115

    Article  Google Scholar 

  • Furbish D.J 1997 Fluid physics in geology. Oxford University Press

  • Gillette DA, Walker TR (1977) Characteristics of airborne particles produced by wind erosion of sandy soil, high plains of West Texas. Soil Sci 123:97–110

    Article  Google Scholar 

  • Gillette DA, Blifford IH, Fryrear DW (1974) Influence of wind velocity on size distributions of aerosols generated by wind erosion of soils. J Geophys Res 79:4068–4075

    Article  Google Scholar 

  • Graham DI, Moyeed RA (2002) How many particles for my Lagrangian simulations? Powder Technol 125:179–186

    Article  Google Scholar 

  • Gurioli L, Zanella E, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): flow direction and deposition (part I). J Geophys Res 112:B05213

    Google Scholar 

  • Herman JR, Bhartia PK, Torres O, Hsu C, Seftor C, Celarier E (1997) Global distribution of UV-absorbing aerosols from Nimbus7/TOMS data. J Geophys Res 102:16911–16922

    Article  Google Scholar 

  • Kneller BC, Bennett SJ, McCaffrey WD (1999) Velocity structure, turbulence and fluid stresses in experimental gravity currents. J Geophys Res 104:5381–5391

    Article  Google Scholar 

  • Kok JF, Renno NO (2009) A comprehensive numerical model of steady state saltation. J Geophys Res 114:D17204

    Article  Google Scholar 

  • Kok JF, Parteli EJR, Michaels TI, Karam DB (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75:1–72

    Article  Google Scholar 

  • Léon JF, Legrand M (2003) Mineral dust sources in the surroundings of the north Indian Ocean. Geophys Res Lett 30:1309

    Article  Google Scholar 

  • Li Y, Guo Y (2008) Numerical simulation of aeolian dusty sand transport in a marginal desert region at the early entrainment stage. Geomorphology 100:335–344

    Article  Google Scholar 

  • McTainsh G, Strong C (2007) The role of aeolian dust in ecosystems. Geomorphology 89:39–54

    Article  Google Scholar 

  • Meiburg E, Kneller BC (2010) Turbidity currents and their deposits. Annu Rev Fluid Mech 42:135–156

    Article  Google Scholar 

  • Mele D, Dellino P, Sulpizio R, Braia G (2011) A systematic investigation on the aerodynamics of ash particles. J Volcanol Geotherm Res 203:1–11

    Article  Google Scholar 

  • Middleton NJ (1986a) Dust storms in the Middle East. J Arid Environ 10:83–96

    Google Scholar 

  • Middleton NJ (1986b) A geography of dust storms in south-west Asia. J Climatol 6:183–196

    Article  Google Scholar 

  • Miller RL, Cakmur RV, Perlwitz J, Geogdzhayev IV, Ginoux P, Koch D, Kohfeld KE, Prigent C, Ruedy R, Schmidt GA, Tegen I (2006) Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model. J Geophys Res 111:D06208

    Google Scholar 

  • Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55:193–208

    Article  Google Scholar 

  • Natsagdorj L, Jugder D, Chung YS (2003) Analysis of dust storms observed in Mongolia during 1937–1999. Atmos Environ 37:1401–1411

    Article  Google Scholar 

  • Offer ZY, Goossens D (1995) Wind tunnel experiments and field measurements of aeolian dust deposition on conical hills. Geomorphology 14:43–56

    Article  Google Scholar 

  • Patankar S.V 1980 Numerical heat transfer and fluid flow. Hemisphere

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002

    Article  Google Scholar 

  • Prosser G, Bentivenga M, Laurenzi MA, Caggianelli A, Dellino P, Doronzo DM (2008) Late Pliocene volcaniclastic products from Southern Apennines: distal witness of early explosive volcanism in the central Tyrrhenian Sea. Geol Mag 145:521–536

    Article  Google Scholar 

  • Shao Y, Dong CH (2006) A review on East Asian dust storm climate, modelling and monitoring. Global Planet Change 52:1–22

    Article  Google Scholar 

  • Shao Y, Raupach MR, Findlater PA (1993) Effect of saltation bombardment on the entrainment of dust by wind. J Geophys Res 98:12719–12726

    Article  Google Scholar 

  • Song Z (2004) A numerical simulation of dust storms in China. Environ Model Software 19:141–151

    Article  Google Scholar 

  • Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65

    Article  Google Scholar 

  • Thomas DSG, Knight M, Wiggs GFS (2005) Remobilization of southern African desert dune systems by twenty-first century global warming. Nature 435:1218–1221

    Article  Google Scholar 

  • Torres O, Bhartia PK, Herman JR, Ahmad Z, Gleason J (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J Geophys Res 103:17099–17110

    Article  Google Scholar 

  • Valentine GA, Doronzo DM, Dellino P, de Tullio MD (2011) Effects of volcano profile on dilute pyroclastic density currents: numerical simulations. Geology 39:947–950

    Article  Google Scholar 

  • Versteeg H.K, Malalasekera W 2007 An introduction to computational fluid dynamics: the finite volume method. Pearson Prentice Hall

  • Zender CS, Bian H, Newman D (2003) Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. J Geophys Res 108:4416–4435

    Article  Google Scholar 

Download references

Acknowledgments

We greatly thank reviewers and editor for suggesting improvements and in assisting this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Doronzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doronzo, D.M., Khalaf, E.A., Dellino, P. et al. Local impact of dust storms around a suburban building in arid and semi-arid regions: numerical simulation examples from Dubai and Riyadh, Arabian Peninsula. Arab J Geosci 8, 7359–7369 (2015). https://doi.org/10.1007/s12517-014-1730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1730-2

Keywords

Navigation