Skip to main content

Advertisement

Log in

Integrated geostatistics and GIS techniques for assessing groundwater contamination in Al Arish area, Sinai, Egypt

تكامل التقنيات الجيوإحصائية و نظم المعلومات الجغرافية لتقييم تلوث المياه الجوفية في منطقة العريش - سيناء – مصر

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Sustainable development in El Arish area of North Sinai, Egypt, is retarded by serious environmental problems, where the land-use and land cover of the region is changing over present time. The impact of human activities in the study area is accompanied by the destruction and over-exploitation of the environment. This study applies multivariate statistics (factor and cluster analyses) and GIS techniques to identify both anthropogenic and natural processes affecting the groundwater quality in the Quaternary sands aquifer. The aim of this study was to investigate the impacts on groundwater resources, the potential pollution sources, and to identify the main anthropogenic inputs of both nutrients and trace metal. Since the depth to the water table is shallow especially in the northern part (<4 m), and the aquifer was exposed on the ground surface, it has poor buffering capacity and the pollution risk is very high. Groundwater chemistry in this coastal region has complex contaminant sources, where intensive farming activities and untreated wastes put stress on groundwater quality. Several areal distribution maps were constructed for correlating water quality with possible contributing factors such as location, land-use, and aquifer depth. These maps identified both anthropogenic and natural processes affecting groundwater quality of the studied aquifer. Cluster analysis was used to classify water chemistry and determine the hydrochemical groups, Q-mode dendrogram is interpreted and there are three main clusters. Factor analyses identify the potential contamination sources affecting groundwater hydrochemistry such as: nitrate, sulfate, phosphate and potassium fertilizers, pesticides, sewage pond wastes, and salinization due to circulation of dissolved salts in the irrigation water itself.

ملخص

تعاق التنمية المستدامة في منطقة العريش بشمال سيناء - مصر بعدد من المشاكل البيئية الخطيرة ، حيث أن استخدام الأراضي والغطاء النباتي في هذه المنطقة آخذ في التغير بشكل كبير مع مرور الوقت. حيث ظهر بوضوح أثر التسارع في الأنشطة البشرية في تلك المنطقة و ما تمثله من استغلال مفرط للبيئة وما يستتبعه من تهديدات قد تؤدي إلى آثار سلبية مدمرة. تطبق هذه الدراسة الطرق الجيوإحصائية متعددة المتغيرات (التحليل العاملي و التحليل العنقودي) وتقنيات نظم المعلومات الجغرافية لتحديد العوامل البشرية والطبيعية التي تؤثر على نوعية و جودة المياه في الطبقات الحاملة للمياه الجوفية لخزان العصر الرباعي. الهدف من هذه الدراسة استكشاف المؤثرات المختلفة التي تعمل على زيادة تلوث موارد المياه الجوفية ، و تقييم مصادر التلوث المحتملة وتحديد المدخلات البشرية الرئيسية مثل المواد المتخلفة عن النشاط البشري وكذلك المعادن الشحيحة والنادرة على حد سواء ، حيث أن أعماق المياه الجوفية ضحل جداً وبخاصة في الجزء الشمالي من منطقة الدراسة أقل من 4 أمتار تحت سطح الأرض. و مما يزيد الأمر خطورة هو إنكشاف الطبقة الحاملة للمياه الجوفية على سطح الأرض ، و لذلك تضعف قدرة الخزان على مقاومة الملوثات و الإمساك بها. إن كيميائية المياه الجوفية في هذه المنطقة الساحلية تتأثر بعدد من مصادر التلوث المعقدة و المتداخلة ، حيث أن الأنشطة الحيوية و الزراعية ومياه الصرف الغير معالجة تكثف و تفرض المزيد من الضغوط على نوعية و جودة المياه الجوفية. تم بناء العديد من الخرائط المساحية للعناصر المختلفة لربط نوعية المياه مع العوامل الممكن مساهمتها في زيادة التلوث مثل الموقع واستخدام الأراضي وعمق المياه الجوفية. حيث حددت هذه الخرائط على حد سواء العوامل البشرية والطبيعية التي تؤثر على نوعية و جودة المياه الجوفية في الطبقة الحاملة للمياه الجوفية لعصر الرباعي. و تم استخدام التحليل العنقودي لتصنيف المياه الجوفية من الناحية الهيدروكيميائية ، وتم تحديد ثلاث مجموعات رئيسية. كذلك حدد التحليل العاملي مصادر التلوث المحتملة التي تؤثر على هيدروكيميائية المياه الجوفية في منطقة الدراسة مثل : النترات والكبريتات والفوسفات والأسمدة البوتاسية ، والمبيدات ، و مياه الصرف الصحي وزيادة الملوحة نتيجة لإعادة تدوير الأملاح في مياه الري.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al Yamany M, Bazuhair A, Hussein M (1994) Interpretation of groundwater chemistry by factor analysis technique. JKAU Earth Sci 7:89–100

    Google Scholar 

  • Ayers S, Westcot Q (1987) Calidad del agua en la Agricultura. Riego y Drenaje No. 29, FAO. Roma, Italia. pp. 174

  • Cutter G, Bruland K (1984) The marine biogeochemistry of selenium: a re-evaluation. Limnol Oceanogr 29:1179–1192

    Article  Google Scholar 

  • Dalton M, Upchurch S (1978) Interpretation of hydrochemical facies by factor analyses. Groundwater 16(4):228–233

    Article  Google Scholar 

  • Dames, Moore (1984) Sinai development study (phase I): Water resources., Vol. II-A and II-B: report submitted to the Advisory Committee for Reconstruction, Ministry of Development, Cairo, Egypt (unpublished report)

  • Davis J (2002) Statistics and Data Analysis in Geology, 3rd edn. Wiley, New York, p 638

    Google Scholar 

  • Deveral S, Fio J, Dubrovsky N (1994) Distribution and mobility of selenium in groundwater in the western San Joaquin Valley. In: Frankenberger WT Jr, Benson S (eds) Selenium in the Environment. Marcel Dekker, New York, pp 157–184

    Google Scholar 

  • Egyptian Metrological Authority, 1996. “Climatic Atlas of Egypt” Published, Arab Republic of Egypt, Ministry of Transport.

  • El Alfy M, Merkel B (2006) Hydrochemical relationships and geochemical modeling of ground water in Al Arish area, north Sinai, Egypt. Hydrological Science and Technology 22(1–4):47–62, ISSN 0887-686X

    Google Scholar 

  • El Bihery M, Lachmar T (1994) Ground water quality degradation as a result of overpumping in the delta of Wadi El Arish area, Sinai Peninsula, Egypt. Envi Geol 24:293–305

    Article  Google Scholar 

  • El Shazly M, Abdel-Gaphour E (1990) Genesis, formation and classification of soils of the coastal plain of the Sinai peninsula Egypt. J Soil Sc 30(1–2):59–72

    Google Scholar 

  • Farnham I, Stetzenbach K, Singh A, Johannesson K (2000) Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element geochemistry, multivariate statistics, and geographical information system. Math Geol 32:943–968

    Article  Google Scholar 

  • Gehad A (2003) Deteriorated Soils in Egypt: Management and Rehabilitation. Ministry of agriculture and land reclamation executive authority for land improvement projects. 37

  • Hem J (1970) Study and interpretation of the chemical characteristics of natural water. US Water-Supply Pap 1473:363

    Google Scholar 

  • Hem J (1992) Study and Interpretation of the Chemical Characteristics of Natural Water. United States Geological Survey Water Supply Paper 2254, 3rd Edn. p. 263

  • Kenneth K, Neeltje C (2002) Agriculture drainage water management in arid and semiarid areas. FAO: Irrigation and drainage papers, pp.202. E.E.U.U.

  • Lawrence A, Upchurch S (1983) Identification of recharge areas using geochemical factor analysis. Ground Water 20(6):680–687

    Article  Google Scholar 

  • Madison R, Brunett J (1985) “Overview of the Occurrence of Nitrate in Groundwater of the United States,” National Water Summary 1985- Hydrologic Events, Selected Water-Quality Trends and Ground-Water Resources. Water-Supply Paper 2275. Reston, Virginia: US Geological Survey.

  • Matthess G. (1990) Die Beschaffenheit des Grundwassers, 2.Aufl.- Gebrueder Borntraeger; Stuttgart.

  • Microimages (2004) Online reference manual for TNT products. http://www.microimages.com

  • Mikkelsen R, Page A, Haghnia G (1988) Effect of salinity and its composition on the accumulation of selenium by alfalfa. Plant Soil 107:63–67

    Article  Google Scholar 

  • Morsy A, Hegab O, Ismail M (1995) Lithostratigraphy and sedimentology of the subsurface Quaternary in northeast Sinai, Egypt. Proc. 4th Conf. Geol. Sinai Develop., Ismailia, pp. 141–158

  • NAS-NAE (1973) Water quality criteria 1972: a report of the committee on water quality criteria. US Environmental Protection Agency, pp. 232–353

  • Nriagu O (1994) Arsenic in the environment part II: Human health and ecosystem effects. Advances in environmental science and technology, Bd.27. Wiley, New York

    Google Scholar 

  • Paver G, Jordan J (1956) Report of the ministry of Public Works on the reconnaissance hydrogeological and geophysical observation in north Sinai coastal area of Egypt. Cairo, Egypt: Desert Institute. No. 7. pp. 7–9z

  • Pfeifer H, Gueye-Girardet A, Reymond D, Schlegel C, Temgoua E, Hesterberg D, Chou J (2004) Dispersion of natural arsenic in the Malcantone watershed, Southern Switzerland: field evidence for repeated sorption–desorption and oxidation–reduction processes. Geoderma 122:205–234

    Article  Google Scholar 

  • Presser T (1994) Geologic origin and pathways of selenium from the California coast ranges to the west-central San Joaquin Valley. In: Frankenberger WT Jr, Benson S (eds) Selenium in the Environment. Marcel Dekker, New York, pp 139–156

    Google Scholar 

  • Shata A (1959) Ground water and geomorphology of the northern sector of wadi El-Arish Basin. Ball. Soc Géograph Egypte 32:247–262

    Google Scholar 

  • Smith J, Lerner D (2007) A framework for rapidly assessing the pollutant retardation capacity of aquifers and sediments. QJEGH 40:137–146

    Article  Google Scholar 

  • SPSS (2007) Statistical Package for the Social Sciences. Data Analysis with Comprehensive Statistics Software. Online May 21, 2007. http://www.spss.com/spss/.

  • StatSoft, Inc. (2004) STATISTICA (data analysis software system), Version 6. Available from: www.statsoft.com.

  • Suk H, Lee K (1999) Characterization of a ground water hydrochemical system through multivariate analysis: clustering into ground water zones. Ground Water 37:358–366

    Article  Google Scholar 

  • Swanson S, Bahr J, Schwar M, Potter K (2001) Two-way cluster analysis of geochemical data to constrain spring source waters. Chem Geol 179:73–91

    Article  Google Scholar 

  • TrinkwV (2001) Verordunung zur Novillierung der Trinkwasserverordunung vom 21. Mai 2001, Bundesgesetzblatt Jahrgang 2001, Tile 1 Nr. 24 ausgegeben zu Bonn am 28. Mai 2001, p 31

  • US Environmental Protection Agency (1976) National Interim Primary Drinking Water Regulations, EPA-570/9-76-003, Washington, D.C. p 159

  • US Environmental Protection Agency (2001) National primary drinking water regulations; arsenic and clarifications to compliance and new source contaminants monitoring. Federal Register/Vol. 66. No. 194/ Friday October 5, 2001/Proposed Rules, pp 50961–50963

  • Winter M. (2004) Vanadium. WebElements TM Periodic Table (Professional edition). The University of Sheffield and WebElements Ltd., UK http://www.webelements.com

  • WHO (1998) Guidelines for drinking-water quality. Vol. 2, Health criteria and other supporting information. Geneva, WHO, 1996 (Second edition); and addendum to Vol. 2, 1998.

  • WHO (2006) Guidelines for drinking-water quality, first addendum to 3rd edn. vol. 1, recommendations. ISBN 92 4 154696 4 (NLM classification: WA 675). p 515

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Alfy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Alfy, M. Integrated geostatistics and GIS techniques for assessing groundwater contamination in Al Arish area, Sinai, Egypt. Arab J Geosci 5, 197–215 (2012). https://doi.org/10.1007/s12517-010-0153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-010-0153-y

Keywords

Navigation