Skip to main content
Log in

Developing a PCA–ANN Model for Predicting Chlorophyll a Concentration from Field Hyperspectral Measurements in Dianshan Lake, China

  • Original Paper
  • Published:
Water Quality, Exposure and Health Aims and scope Submit manuscript

Abstract

This paper aims at combining principle component analysis (PCA) and artificial neural network (ANN) algorithm to predict chlorophyll a concentration in Dianshan Lake, Shanghai, eastern China. Firstly, based on field hyperspectral measurements, the sensitive wavelengths were selected as the input variables to build the basic ANN model, and the estimate accuracy (R 2) reached 0.85. In order to improve the accuracy and stability of the ANN model, the total nitrogen, total phosphorus, chemical oxygen demand, dissolve oxygen, and dissolved potential of hydrogen were selected as additional input variables. Consequently, the model accuracy increased to 0.9091. Further, aiming at eliminating the effect of inter-correlation of input variables, the PCA method was utilized to reduce the dimension of input variables. The result shows that the combined PCA–ANN model can reach an estimated accuracy with R 2 = 0.9184 and RMSE < 5.6 mg m−3. Moreover, the stability and performance of the enhanced model was further evaluated by cross-validation of PCA–ANN model output and in situ measured datasets. The model sensitivity test through adding 10 % Gauss white noise to the input variables also proved that the enhanced PCA–ANN model has better noise tolerance ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barbieri P et al (1999) Modeling bio-geochemical interactions in the surface waters of the Gulf of Trieste by three-way principal component analysis (PCA), vol 398. Elsevier, Amsterdam

    Google Scholar 

  • Bricaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton—analysis and parameterization. J Geophys Res-Oceans 100:13321–13332. doi:10.1029/95jc00463

    Article  Google Scholar 

  • Buckton D, O’Mongain E, Danaher S (1999) The use of neural networks for the estimation of oceanic constituents based on the MERIS instrument. Int J Remote Sens 20:1841–1851. doi:10.1080/014311699212515

    Article  Google Scholar 

  • Çamdevýren H, Demýr N, Kanik A, Keskýn S (2005) Use of principal component scores in multiple linear regression models for prediction of Chlorophyll a in reservoirs. Ecol Model 181:581–589. doi:10.1016/j.ecolmodel.2004.06.043

    Article  Google Scholar 

  • Chaloulakou A, Saisana M, Spyrellis N (2003) Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Sci Total Environ 313:1–13. doi:10.1016/S0048-9697(03)00335-8

    Article  CAS  Google Scholar 

  • Cheng X, Li XP (2010) Long-term changes in nutrients and phytoplankton response in Lake Dianshan, a shallow temperate lake in China. J Freshw Ecol 25:549–554. doi:10.1080/02705060.2010.9664404

    Article  CAS  Google Scholar 

  • Cipollini P, Corsini G, Diani M, Grasso R (2001) Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks. Ieee T Geosci Remote 39:1508–1524. doi:10.1109/36.934081

    Article  Google Scholar 

  • Duan H, Ma R, Xu J, Zhang Y, Zhang B (2010) Comparison of different semi-empirical algorithms to estimate chlorophyll a concentration in inland lake water. Environ Monit Assess 170:231–244. doi:10.1007/s10661-009-1228-7

    Article  CAS  Google Scholar 

  • Flink P, Lindell T, Ostlund C (2001) Statistical analysis of hyperspectral data from two Swedish lakes. Sci Total Environ 268:155–169. doi:10.1016/S0048-9697(00)00686-0

    Article  CAS  Google Scholar 

  • Flores-de-Santiago F, Kovacs JM, Flores-Verdugo F (2013) The influence of seasonality in estimating mangrove leaf chlorophyll a content from hyperspectral data. Wetl Ecol Manag 21:193–207. doi:10.1007/s11273-013-9290-x

    Article  CAS  Google Scholar 

  • Gitelson AA, Gurlin D, Moses WJ, Barrow T (2009) A bio-optical algorithm for the remote estimation of the chlorophyll a concentration in case 2 waters. Environ Res Lett 4: 045003. doi:10.1088/1748-9326/4/4/045003

  • Hakanson L, Malmaeus JM, Bodemer U, Gerhardt V (2003) Coefficients of variation for chlorophyll, green algae, diatoms, cryptophytes and blue-greens in rivers as a basis for predictive modelling and aquatic management. Ecol Model 169:179–196. doi:10.1016/S0304-3800(03)00269-2

    Article  CAS  Google Scholar 

  • Jamet C, Thiria S, Moulin C, Crepon M (2005) Use of a neurovariational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery: a feasibility study. J Atmos Ocean Technol 22:460–475. doi:10.1175/JTECH1688.1

    Article  Google Scholar 

  • Jeong KS, Kim DK, Joo GJ (2006) River phytoplankton prediction model by Artificial Neural Network: model performance and selection of input variables to predict time-series phytoplankton proliferations in a regulated river system. Ecol Inform 1:235–245. doi:10.1016/j.ecoinf.2006.04.001

    Article  CAS  Google Scholar 

  • Johnson RA, Wichern DW (1982) Applied multivariate statistical analysis. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  • Keiner LE, Yan X-H (1998) A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery. Remote Sens Environ 66:153–165. doi:10.1016/S0034-4257(98)00054-6

    Article  Google Scholar 

  • Kilham NE, Roberts D (2011) Amazon River time series of surface sediment concentration from MODIS. Int J Remote Sens 32:2659–2679. doi:10.1080/01431161003713044

    Article  Google Scholar 

  • Koponen S, Pulliainen J, Kallio K, Hallikainen M (2002) Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens Environ 79:51–59. doi:10.1016/S0034-4257(01)00238-3

    Article  Google Scholar 

  • Ma RH, Dai JF (2005) Investigation of chlorophyll a and total suspended matter concentrations using Landsat ETM and field spectral measurement in Taihu Lake. China Int J Remote Sens 26:2779–2795. doi:10.1080/01431160512331326648

    Article  Google Scholar 

  • Mobley CD et al (2005) Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Appl Opt 44:3576–3592

    Article  Google Scholar 

  • Perkins RG, Underwood GJC (2000) Gradients of chlorophyll a and water chemistry along an eutrophic reservoir with determination of the limiting nutrient by in situ nutrient addition. Water Res 34:713–724

    Article  CAS  Google Scholar 

  • Petersen W, Bertino L, Callies U, Zorita E (2001) Process identification by principal component analysis of river water-quality data. Ecol Model 138:193–213. doi:10.1016/S0304-3800(00)00402-6

    Article  CAS  Google Scholar 

  • Ranković V, Radulović J, Radojević I, Ostojić A, Čomić L (2010) Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecol Model 221:1239–1244. doi:10.1016/j.ecolmodel.2009.12.023

    Article  Google Scholar 

  • Raudys A, Long JA (2001) MLP based linear feature extraction for nonlinearly separable data. Pattern Anal Appl 4:227–234. doi:10.1007/s100440170001

    Article  Google Scholar 

  • Ritchie JC, Cooper CM, Schiebe FR (1990) The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon Lake, Mississippi. Remote Sens Environ 33:137–148. doi:10.1016/0034-4257(90)90039-O

    Article  Google Scholar 

  • Schmidt KS, Skidmore AK (2001) Exploring spectral discrimination of grass species in African rangelands. Int J Remote Sens 22:3421–3434. doi:10.1080/01431160152609245

    Article  Google Scholar 

  • Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38:3980–3992. doi:10.1016/j.watres.2004.06.011

  • Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality—a case study. Ecol Model 220:888–895. doi:10.1016/j.ecolmodel.2009.01.004

  • Steinberg CEW, Hartmann HM (1988) Planktonic bloom-forming cyanobacteria and the eutrophication of lakes and rivers. Freshw Biol 20:279–287. doi:10.1111/j.1365-2427.1988.tb00452.x

  • Stevens J (1986) Applied multivariate statistics for the social sciences. L. Erlbaum Associates Inc., Hill Sdale, p 515

    Google Scholar 

  • Tanaka A, Kishino M, Doerffer R, Schiller H, Oishi T, Kubota T (2004) Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner. J Oceanogr 60:519–530. doi:10.1023/B:Joce.0000038345.99050.C0

    Article  Google Scholar 

  • Tang JW, Tian GL, Wang XY, Wang X, Song Q (2004) The methods of water spectra measuring and analysis I: above-water method. J Remote Sens 8(1):37–44

    Google Scholar 

  • Tufford DL, McKellar HN (1999) Spatial and temporal hydrodynamic and water quality modeling analysis of a large reservoir on the South Carolina (USA) coastal plain. Ecol Model 114:137–173. doi:10.1016/S0304-3800(98)00122-7

    Article  CAS  Google Scholar 

  • Tzortziou M, Herman JR, Gallegos CL, Neale PJ, Subramaniam A, Harding LW, Ahmad Z (2006) Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure. Estuar Coast Shelf Sci 68:348–362. doi:10.1016/j.ecss.2006.02.016

    Article  Google Scholar 

  • Vilas LG, Spyrakos E, Palenzuela JMT (2011) Neural network estimation of chlorophyll a from MERIS full resolution data for the coastal waters of Galician rias (NW Spain). Remote Sens Environ 115:524–535. doi:10.1016/j.rse.2010.09.021

    Article  Google Scholar 

  • Vincent RK, Qin X, McKay RML, Miner J, Czajkowski K, Savino J, Bridgeman T (2004) Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sens Environ 89:381–392. doi:10.1016/j.rse.2003.10.014

    Article  Google Scholar 

  • Wang D, Feng XZ, Ma RH, Kang GD (2007) A method for retrieving water-leaving radiance from Landsat TM image in Taihu Lake, east China. Chin Geogr Sci 17:364–369. doi:10.1007/s11769-007-0364-7

    Article  Google Scholar 

  • Yacobi YZ, Moses WJ, Kaganovsky S, Sulimani B, Leavitt BC, Gitelson AA (2011) NIR-red reflectance-based algorithms for chlorophyll a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Res 45:2428–2436. doi:10.1016/j.watres.2011.02.002

    Article  CAS  Google Scholar 

  • Zhang TL, Fell F, Liu ZS, Preusker R, Fischer J, He MX (2003) Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in case I waters. J Geophys Res-Oceans 108: 3286. doi:10.1029/2002jc001638

  • Zhang YL, Feng LQ, Li JS, Luo LC, Yin Y, Liu ML, Li YL (2010) Seasonal-spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China. J Plankton Res 32:1023–1037. doi:10.1093/plankt/fbq039

    Article  CAS  Google Scholar 

  • Zhou L, Xu B, Ma W, Zhao B, Li L, Huai H (2013) Evaluation of hyperspectral multi-band indices to estimate chlorophyll a concentration using field spectral measurements and satellite data in Dianshan Lake, China. Water 5:525–539. doi:10.3390/w5020525

    Article  Google Scholar 

  • Zhou L, Roberts DA, Ma W, Zhang H, Tang L (2014) Estimation of higher chlorophylla concentrations using field spectral measurement and HJ-1A hyperspectral satellite data in Dianshan Lake, China. ISPRS J Photogramm Remote Sens 88:41–47. doi:10.1016/j.isprsjprs.2013.11.016

    Article  Google Scholar 

  • Zimba PV, Gitelson A (2006) Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: model tuning and accuracy optimization. Aquaculture 256:272–286. doi:10.1016/j.aquaculture.2006.02.038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly funded by National Natural Science Foundation of China (Grant No. 41001234 and 41171432), Shanghai Municipal Natural Science Foundation of China (Grant No. 15ZR1404000), and specialized Research Fund for the Doctoral Program of Higher Education of China (2010007120013). The authors are grateful to the anonymous reviewers for their valuable comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Ma, W., Zhang, H. et al. Developing a PCA–ANN Model for Predicting Chlorophyll a Concentration from Field Hyperspectral Measurements in Dianshan Lake, China. Water Qual Expo Health 7, 591–602 (2015). https://doi.org/10.1007/s12403-015-0175-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-015-0175-5

Keywords

Navigation