Skip to main content
Log in

Macroscopic probabilistic cracking approach for the numerical modelling of fluid leakage in concrete

  • Original Article
  • Published:
Annals of Solid and Structural Mechanics

Abstract

The article presents a numerical finite element study of fluid leakage in concrete. Concrete cracking is numerically modelled in the framework of a macroscopic probabilistic approach. Material heterogeneity and the related mechanical effects are taken into account by defining the elementary mechanical properties according to spatially uncorrelated random fields. Each finite element is considered as representative of a volume of heterogeneous material, whose mechanical behaviour depends on its own volume. The parameters of the statistical distributions defining the elementary mechanical properties thus vary over the computational mesh element-by-element. A weak hydro-mechanical coupling assumption is introduced to represent the influence of cracking on the variation of transfer properties: it is assumed that the mechanical cracking of a finite element induces a loss of isotropy of its own permeability tensor. At the elementary level, an experimentally enhanced parallel plates model is used to relate the local crack permeability to the elementary crack aperture. A Monte Carlo-like approach allows to statistically validate the numerical method. The self-consistency of the proposed modelling strategy is finally explored through the numerical simulation of the hydro-mechanical splitting test, recently proposed by authors to evaluate the real-time evolution of the transfer properties of a concrete sample under loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akhavan A, Shafaatian S, Rajabipour F (2012) Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars. Cem Concr Res 42(2):313–320

    Article  Google Scholar 

  2. Aldea C, Ghandehari M, Shah S, Karr A (2000) Estimation of water flow through cracked concrete under load. ACI Mater J 97(5):567–575

    Google Scholar 

  3. Andrade C, Gonzalez J (2004) Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Mater Corros 29(8):515–519

    Article  Google Scholar 

  4. Barani O, Khoei A, Mofid M (2011) Modeling of cohesive crack growth in partially saturated porous media: a study on the permeability of cohesive fracture. Int J Fract 167(1):15–31

    Article  MATH  Google Scholar 

  5. Baroghel-Bouny V, Kinomura K, Thiery M, Moscardelli S (2011) Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials. Cem Concr Compos 33:832–847

    Article  Google Scholar 

  6. Bary B (1996) Etude du couplage hydraulique-mécanique dans le béton endommagé. PhD thesis, Université Paris 6

  7. Bazant Z, Oh B (1983) Crack band theory for fracture of concrete. Mater struct 16(3):155–177

    Google Scholar 

  8. Bodin J, Delay F, De Marsily G (2003) Solute transport in a single fracture with negligible matrix permeability: 1. fundamental mechanisms. Hydrogeol J 11(4):418–433

    Article  Google Scholar 

  9. Boulay C, Dal Pont S, Belin P (2009) Real-time evolution of electrical resistance in cracking concrete. Cem Concr Res 39:825–831

    Article  Google Scholar 

  10. Briffaut M, Benboudjema F, Torrenti J, Nahas G (2011) Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures. Eng struct 33(4):1390–1401

    Article  Google Scholar 

  11. Callari C, Armero F (2002) Finite element methods for the analysis of strong discontinuities in coupled poro-plastic media. Comput Methods Appl Mech Eng 191(39):4371–4400

    Article  MATH  MathSciNet  Google Scholar 

  12. Carrier B, Granet S (2011) Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng Fract Mech 79:312–328

  13. Colliat JB, Hautefeuille M, Ibrahimbegovic A, Matthies H (2007) Stochastic approach to size effect in quasi-brittle materials. Comptes Rendus Mécanique 335(8):430–435

    Article  MATH  Google Scholar 

  14. Coussy O (2004) Poromechanics. Wiley, New York

    Google Scholar 

  15. Crisfield M (1982) Accelerated solution techniques and concrete cracking. Comput Methods Appl Mech Eng 33(1):585–607

    Article  MATH  MathSciNet  Google Scholar 

  16. Dal Pont S, Ehrlacher A (2004) Numerical and experimental analysis of chemical dehydration, heat and mass transfers in a concrete hollow cylinder submitted to high temperatures. Int J Heat Mass Transf 47(1):135–147

    Article  Google Scholar 

  17. Dal Pont S, Schrefler B, Ehrlacher A (2005) Experimental and finite element analysis of a hollow cylinder submitted to high temperatures. Mater Struct 38(7):681–690

    Article  Google Scholar 

  18. Dal Pont S, Durand S, Schrefler B (2007) A multiphase thermo-hydro-mechanical model for concrete at high temperatures: finite element implementation and validation under loca load. Nucl Eng Des 237(22):2137–2150

    Article  Google Scholar 

  19. Darcy H (1856) Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris

    Google Scholar 

  20. De Borst R, Nauta P (1985) Non-orthogonal cracks in a smeared finite element model. Eng Comput 2(1):35–46

    Article  Google Scholar 

  21. Dormieux L, Kondo D (2004) Approche micomécanique du couplage perméabilité-endommagement. CR Mec 332(2):135–140

    Article  MATH  Google Scholar 

  22. Drugan W, Willis J (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524

    Article  MATH  MathSciNet  Google Scholar 

  23. Feller W (2008) An introduction to probability theory and its applications, vol 2. Wiley, New York

    Google Scholar 

  24. Freudenthal A (1950) The inelastic behavior of engineering materials and structures. Wiley, New York

    Google Scholar 

  25. Gawin D, Majorana C, Schrefler B (1999) Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mech Cohesive Frict Mater 4(1):37–74

    Article  Google Scholar 

  26. Gawin D, Pesavento F, Schrefler B (2002) Simulation of damage-permeability coupling in hygro-thermo-mechanical analysis of concrete at high temperature. Commun Numer Methods Eng 18(2):113–119

    Article  MATH  Google Scholar 

  27. Granger L, Rieg C, Touret J, Fleury F, Nahas G, Danisch R, Brusa L, Millard A, Laborderie C, Ulm F, Contri P, Schimmelpfennig K, Barr F, Firnhaber M, Gauvain J, Coulon N, Dutton L, Tuson A (2001) Containment evaluation under severe accidents (cesa): synthesis of the predictive calculations and analysis of the first experimental results obtained on the civaux mock-up. Nucl Eng Des 209(1–3):155–163

    Article  Google Scholar 

  28. Hashin Z (1983) Analysis of composite materials. J Appl Mech 50(2):481–505

    Article  MATH  Google Scholar 

  29. Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781

    Article  Google Scholar 

  30. Ibrahimbegovic A, Colliat JB, Hautefeuille M, Brancherie D, Melnyk S (2011) Probability based size effect representation for failure of civil engineering structures built of heterogeneous materials. In: Papadrakakis M, Stefanou G, Papadopoulos V (eds) Computational methods in stochastic dynamics. Computational methods in applied sciences, vol 22. Springer, Netherlands, pp 291–313

  31. Irwin G (1968) Linear fracture mechanics, fracture transition, and fracture control. Eng Fract Mech 1(2):241–257

    Article  MathSciNet  Google Scholar 

  32. Jirásek M (2011) Damage and smeared crack models. In: Hofstetter G, Meschke G (ed) Numerical modeling of concrete cracking. CISM International Centre for Mechanical Sciences, vol 532. Springer, Vienna, pp 1–49

  33. Jirásek M, Zimmermann T (1998) Rotating crack model with transition to scalar damage. J Eng Mech 124(3):277–284

    Article  Google Scholar 

  34. Jourdain X, Colliat JB, DeSa C, Benboudjema F, Gatuingt F (2014) Upscaling permeability for fractured concrete: mesomacro numerical approach coupled to strong discontinuities. Int J Numer Anal Methods Geomech 38(5):536–550. doi:10.1002/nag.2223

    Article  Google Scholar 

  35. Larsson J, Larsson R (2000) Finite-element analysis of localization of deformation and fluid pressure in an elastoplastic porous medium. Int J Solids Struct 37(48):7231–7257

    Article  MATH  Google Scholar 

  36. Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. Cambridge University Press, Cambridge

    Google Scholar 

  37. Lewis R, Schrefler B (1987) The finite element method in the deformation and consolidation of porous media. Wiley, New York, NY

    Google Scholar 

  38. Meftah F, Dal Pont S, Schrefler B (2012) A three-dimensional staggered finite element approach for random parametric modeling of thermo-hygral coupled phenomena in porous media. Int J Numer Anal Methods Geomech 36(5):574–596

    Article  Google Scholar 

  39. Meschke G, Grasberger S, Becker C, Jox S (2011) Numerical modeling of concrete cracking. Springer, chap Smeared Crack and X-FEM Models in the Context of Poromechanics, pp 265–327

  40. Millard A, L’Hostis V (2012) Modelling the effects of steel corrosion in concrete, induced by carbon dioxide penetration. Eur J Environ Civil Eng 16(3–4):375–391

    Article  Google Scholar 

  41. Montemor M, Simoes A, Ferreira M (2003) Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cem Concr Compos 25(4):491–502

    Article  Google Scholar 

  42. Ng A, Small J (1999) A case study of hydraulic fracturing using finite element methods. Can Geotech J 36(5):861–875

    Article  Google Scholar 

  43. Ostoja-Starzewski M (2002) Microstructural randomness versus representative volume element in thermomechanics. Trans Am Soc Mech Eng J Appl Mech 69(1):25–35

    Article  MATH  Google Scholar 

  44. Picandet V (2001) Influence d’un endommagement mécanique sur la perméabilité et la diffusivité hydrique des bétons. PhD thesis, LGC, Nantes

  45. Picandet V, Khelidj A, Bellegou H (2009) Crack effects on gas and water permeability of concretes. Cem Concr Res 39(6):537–547

    Article  Google Scholar 

  46. Pijaudier-Cabot G, Dufour F, Choinska M (2009) Permeability due to the increase of damage in concrete: from diffuse to localized damage distributions. J Eng Mech 135(9):1022–1028

    Article  Google Scholar 

  47. Pouya A, Ghabezloo S (2010) Flow around a crack in a porous matrix and related problems. Transp Porous Media 84(2):511–532

    Article  MathSciNet  Google Scholar 

  48. Ramm E (1981) Strategies for tracing the nonlinear response near limit points. Springer, Berlin

    Book  Google Scholar 

  49. Rastiello G (2013) Influence de la fissuration sur le transfert de fluides dans les structures en béton: stratégies de modélisation probabiliste et étude expérimentale. PhD thesis, Université Paris-Est

  50. Rastiello G, Boulay C, Dal Pont S, Tailhan J, Rossi P (2014) Real-time water permeability evolution of a localized crack in concrete under loading. Cem Concr Res 56(0):20–28. doi:10.1016/j.cemconres.2013.09.010

    Article  Google Scholar 

  51. Réthoré J, De Borst R, Abellan MA (2007) A two-scale approach for fluid flow in fractured porous media. Int J Numer Methods Eng 71(7):780–800

    Article  MATH  Google Scholar 

  52. Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529–551

    Article  MATH  MathSciNet  Google Scholar 

  53. Rocco C, Guinea G, Planas J, Elices M (1999) Size effect and boundary conditions in the brazilian test: experimental verification. Mater Struct 32(3):210–217

    Article  Google Scholar 

  54. Rocco C, Guinea G, Planas J, Elices M (1999) Size effect and boundary conditions in the brazilian test: theoretical analysis. Mater Struct 32(6):437–444

    Article  Google Scholar 

  55. Rossi P (1988) Fissuration du béton: du matériau à la structure à l’application de la mécanique linaire de la rupture. PhD thesis, Ecole Nationale des Ponts et Chaussées

  56. Rossi P, Tailhan J (2012) Cracking of concrete structures: interest and advantages of the probabilistic approaches. In: Rilem international conference on numerical modelling strategies for sustainable concrete structures, SSCS’2012. Aix-en-Provence, France

  57. Rossi P, Wu X (1992) Probabilistic model for material behavior analysis and appraisement of concrete structures. Mag Concr Res 44:271280

    Article  Google Scholar 

  58. Rossi P, Bruhwiler E, Chhuy S, Jenq YS, Shah SP (1990) Fracture properties of concrete as determined by means of wedge splitting tests and tapered double cantilever beam tests. In: Shah SP, Carpinteri A (ed) Fracture mechanics test methods for concrete. RILEM report 5. CRC Press, pp 87–128

  59. Rossi P, Wu X, Le Maou F, Belloc A (1994) Scale effect on concrete in tension. Mater Struct 27(8):437–444

    Article  Google Scholar 

  60. Rossi P, Ulm F, Hachi F (1996) Compressive behavior of concrete: physical mechanisms and modeling. J Eng Mech 122(11):1038–1043

    Article  Google Scholar 

  61. Rots JG, Nauta P, Kuster GMA, Blaauwendraad J (1985) Smeared crack approach and fracture localization in concrete. HERON 30(1)

  62. Secchi S, Schrefler BA (2012) A method for 3-D hydraulic fracturing simulation. Int J Fract 178(1-2):245–258

  63. Segura J, Carol I (2004) On zero-thickness interface elements for diffusion problems. Int J Numer Anal Methods Geomech 28(9):947–962

    Article  MATH  Google Scholar 

  64. Sellier A, La Borderie C, Torrenti J, Mazars J (2010) The french national project ceos. fr: Assessment of cracking risks for special concrete structures under tchm stresses. In: Proceedings of the sixth international conference on concrete under severe conditions: environment and loading

  65. Shao J, Zhou H, Chau K (2005) Coupling between anisotropic damage and permeability variation in brittle rocks. Int J Numer Anal Methods Geomech 29(12):1231–1247

    Article  MATH  Google Scholar 

  66. Simon H, Nahas G, Coulon N (2007) Airsteam leakage through cracks in concrete walls. Nucl Eng Des 237(15-17):1786–1794

    Article  Google Scholar 

  67. Snow D (1969) A parallel plate model of permeable fractured media. PhD thesis, University of California at Berkley

  68. Stroeven M, Askes H, Sluys L (2004) Numerical determination of representative volumes for granular materials. Comput Methods Appl Mech Eng 193(3032):3221–3238. doi:10.1016/j.cma.2003.09.023

    Article  MATH  Google Scholar 

  69. Su X, Yang Z, Liu G (2010) Monte carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3d study. Int J Solids Struct 47(17):2336–2345

    Article  MATH  Google Scholar 

  70. Syroka-Korol E, Tejchman J, Mrz Z (2013) Fe calculations of a deterministic and statistical size effect in concrete under bending within stochastic elasto-plasticity and non-local softening. Eng Struct 48:205–219. doi:10.1016/j.engstruct.2012.09.013

    Article  Google Scholar 

  71. Tailhan JL, Dal Pont S, Rossi P (2010) From local to global probabilistic modeling of concrete cracking. Annals Solid Struct Mech 1(2):103–115

    Article  Google Scholar 

  72. Tailhan JL, Rossi P, Phan T, Foulliaron J (2012) Probabilistic modelling of crack creation and propagation in concrete structures: some numerical and mechanical considerations. In: SSCS-2012

  73. Tailhan JL, Rossi P, Phan T, Rastiello G, Foulliaron J (2013) Multiscale probabilistic approaches and strategies for the modelling of concrete. In: FRAMCOS-8

  74. Temam R (2001) Navier-Stokes equations: theory and numerical analysis, vol 343. American Mathematical Society

  75. Timoshenko S, Goodier J (1951) Theory of elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  76. Ulm F, Coussy O (1998) Couplings in early-age concrete: from material modeling to structural design. Int J Solids Struct 35(31):4295–4311

    Article  MATH  Google Scholar 

  77. Wang K, Jansen D, Shah S, Karr A (1997) Permeability study of cracked concrete. Cem Concr Res 27(3):381–393

    Article  Google Scholar 

  78. Zimmerman R, Bodvarsson G (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23:1–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rastiello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastiello, G., Tailhan, JL., Rossi, P. et al. Macroscopic probabilistic cracking approach for the numerical modelling of fluid leakage in concrete . Ann. Solid Struct. Mech. 7, 1–16 (2015). https://doi.org/10.1007/s12356-015-0038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-015-0038-6

Keywords

Navigation