Skip to main content
Log in

The Cyclicity of a Class of Global Nilpotent Center Under Perturbations of Piecewise Smooth Polynomials with Four \(\hbox {Zones}^*\)

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the bifurcation of limit cycles of near-Hamilton system with four zones separated by nonlinear switching curves. We derive the expression of the first order Melnikov function. As an application, we consider the cyclicity of the system \({\dot{x}}=y, {\dot{y}}=-x^{2m-1}\), where (0, 0) is a global nilpotent center and \(2\le m\in {\mathbb {N}}^{+}\), under the perturbations of piecewise smooth polynomials with four zones separated by \(y=\pm kx^{m}\) with \(k>0\). By analyzing the first order Melnikov function, we obtain the exact bound of the number of limit cycles bifurcating from the period annulus if the first order Melnikov function is not identically zero. We also give some examples to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Andrade, K., Cespedes, O., Cruz, D., Novaes, D.: Higher order Melnikov analysis for planar piecewise linear vector fields with nonlinear switching curve. J. Differ. Equ. 287, 1–36 (2021)

    Article  MathSciNet  Google Scholar 

  2. Bastos, J., Buzzi, C.A., Llibre, J., Novaes, D.D.: Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold. J. Differ. Equ. 267, 3748–3767 (2019)

    Article  MathSciNet  Google Scholar 

  3. Coll, B., Gasull, A., Prohens, R.: Bifurcation of limit cycles from two families of centers. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 12, 275–287 (2005)

    MathSciNet  MATH  Google Scholar 

  4. di Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems Theory and Applications. Springer, London (2008)

    MATH  Google Scholar 

  5. Francoise, J.P., Ji, H., Xiao, D., Yu, J.: Global dynamics of a piecewise smooth system for brain Lactate metabolism. Qual. Theory Dyn. Syst. 18, 315–332 (2019)

    Article  MathSciNet  Google Scholar 

  6. Grau, M., Mañosas, Villadelprat, F.J.: A Chebyshev criterion for Abelian integrals. Trans. Am. Math. Soc. 363, 109–129 (2011)

    Article  MathSciNet  Google Scholar 

  7. Han, M.: Bifurcation Theory of Limit Cycles. Science Press, Beijing (2013)

    Google Scholar 

  8. Han, M., Yang, J.: The maximum number of zeros of functions with parameters and application to differential equations. J. Nonlinear Model. Anal. 3, 13–34 (2021)

    Google Scholar 

  9. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902)

    Article  MathSciNet  Google Scholar 

  10. Li, J.: Hilberts 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13, 47–106 (2003)

    Article  MathSciNet  Google Scholar 

  11. Li, S., Liu, C.: A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system. J. Math. Anal. Appl. 428, 1354–1367 (2015)

    Article  MathSciNet  Google Scholar 

  12. Li, S., Cen, X., Zhao, Y.: Bifurcation of limit cycles by perturbing piecewise smooth integrable non-Hamiltonian systems. Nonlinear Anal. Real World Appl. 34, 140–148 (2017)

    Article  MathSciNet  Google Scholar 

  13. Li, S., Llibre, J.: Canard limit cycles for piecewise linear Liénard systems with three zones. Int. J. Bifur. Chaos Appl. Sci. Engrg. 30, 2050232 (2020)

    Article  Google Scholar 

  14. Liang, F., Romanovski, V., Zhang, D.: Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line. Chaos Solitons Fractals 111, 18–34 (2018)

    Article  MathSciNet  Google Scholar 

  15. Liu, X., Han, M.: Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 20, 1379–1390 (2010)

    Article  MathSciNet  Google Scholar 

  16. Llibre, J., Zhang, X.: Limit cycles for discontinuous planar piecewise linear differential systems separated by an algebraic curve. Int. J. Bifurc. Chaos Appl. Sci. Eng. 29, 1950017 (2019)

    Article  MathSciNet  Google Scholar 

  17. Peng, L., Gao, Y., Feng, Z.: Limit cycles bifurcating from piecewise quadratic systems separated by a straight line. Nonlinear Anal. 196, 111802 (2020)

    Article  MathSciNet  Google Scholar 

  18. Ramirez, O., Alves, A.M.: Bifurcation of limit cycles by perturbing piecewise non-Hamiltonian systems with nonlinear switching manifold. Nonlinear Anal. Real World Appl. 57, 103188 (2021)

    Article  MathSciNet  Google Scholar 

  19. Sabatini, M.: On the period function of \(x^{^{\prime \prime }}+f(x)x^{^{\prime }2}+g(x)=0\). J. Differ. Equ. 196, 151–168 (2004)

    Article  Google Scholar 

  20. Sui, S., Yang, J., Zhao, L.: On the number of limit cycles for generic Lotka-Volterra system and Bogdanov-Takens system under perturbations of piecewise smooth polynomials. Nonlinear Anal. Real World Appl. 49, 137–158 (2019)

    Article  MathSciNet  Google Scholar 

  21. Tang, S., Liang, J.: Global qualitative analysis of a non-smooth Gause predator–prey model with a refuge. Nonlinear Anal. 76, 165–180 (2013)

    Article  MathSciNet  Google Scholar 

  22. Teixeira, M.: Perturbation theory for non-smooth systems. In: Encyclopedia of Complexity and Systems Science. Springer, New York (2009)

  23. Tian, H., Han, M.: Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with switching curve. Discrete Contin. Dyn. Syst. Ser. B. 26, 5581–5599 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Wang, Y., Han, M., Constantinescu, D.: On the limit cycles of perturbed discontinuous planar systems with 4 switching lines. Chaos Solitons Fractals 83, 158–177 (2016)

    Article  MathSciNet  Google Scholar 

  25. Wang, J., Zhao, L.: The cyclicity of period annulus of degenerate quadratic Hamiltonian systems with polycycles \(S^{(2)}\) or \(S^{(3)}\) under perturbations of piecewise smooth polynomials. Int. J. Bifurc. Chaos Appl. Sci. Eng. 30, 2050230 (2020)

    Article  MathSciNet  Google Scholar 

  26. Xiong, Y., Han, M.: Limit cycles appearing from a generalized heteroclinic loop with a cusp and a nilpotent saddle. J. Differ. Equ. 303, 575–607 (2021)

    Article  MathSciNet  Google Scholar 

  27. Yang, J.: Limit cycles appearing from the perturbation of differential systems with multiple switching curves. Chaos Solitons Fractals 135, 109764 (2020)

    Article  MathSciNet  Google Scholar 

  28. Zang, H., Han, M., Xiao, D.: On Melnikov functions of a homoclinic loop through a nilpotent saddle for planar near-Hamiltonian systems. J. Differ. Equ. 245, 1086–1111 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere appreciation to the reviewer for his/her helpful comments which helped with improving the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqin Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Natural Science Foundation of China (12071037)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Zhao, L. The Cyclicity of a Class of Global Nilpotent Center Under Perturbations of Piecewise Smooth Polynomials with Four \(\hbox {Zones}^*\). Qual. Theory Dyn. Syst. 21, 73 (2022). https://doi.org/10.1007/s12346-022-00600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00600-2

Keywords

Mathematics Subject Classification

Navigation