Skip to main content
Log in

Cerebellar White Matter Structural Correlates of Locomotor Adaptation. Do They Reflect Neural Adaptation?

  • Letter to the Editor
  • Published:
The Cerebellum Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Hardwick RM, Rottschy C, Miall RC, Eickhoff SB. A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage. 2013;67:283–97.

    Article  Google Scholar 

  2. Della-Maggiore V, Scholz J, Johansen-Berg H, Paus T. The rate of visuomotor adaptation correlates with cerebellar white-matter microstructure. Hum Brain Mapp. 2009;30(12):4048–53.

    Article  Google Scholar 

  3. Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J, et al. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res. 2009;199(1):61–75.

    Article  Google Scholar 

  4. Mawase F, Bar-Haim S, Shmuelof L. Formation of long-term locomotor memories is associated with functional connectivity changes in the cerebellar–thalamic–cortical network. J Neurosci. 2017;37(2):349–61.

    Article  CAS  Google Scholar 

  5. Della-Maggiore V, McIntosh AR. Time course of changes in brain activity and functional connectivity associated with long-term adaptation to a rotational transformation. J Neurophysiol. 2005;93(4):2254–62.

    Article  Google Scholar 

  6. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007;64(1):20–4.

    Article  Google Scholar 

  7. Jossinger, S., et al., Locomotor adaptation is associated with microstructural properties of the inferior cerebellar peduncle. Cerebellum, 2020: p. 1–13.

  8. Jayaram G, Tang B, Pallegadda R, Vasudevan EVL, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107(11):2950–7.

    Article  Google Scholar 

  9. Holtzer R, Epstein N, Mahoney JR, Izzetoglu M, Blumen HM. Neuroimaging of mobility in aging: a targeted review. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2014;69(11):1375–88.

    Article  Google Scholar 

  10. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–33.

    Article  CAS  Google Scholar 

  11. Torres-Oviedo G, et al. Locomotor adaptation. Prog Brain Res. 2011;191:65–74.

    Article  Google Scholar 

  12. Reisman DS, Bastian AJ, Morton SM. Neurophysiologic and rehabilitation insights from the split-belt and other locomotor adaptation paradigms. Phys Ther. 2010;90(2):187–95.

    Article  Google Scholar 

  13. Qazi AA, Radmanesh A, O'Donnell L, Kindlmann G, Peled S, Whalen S, et al. Resolving crossings in the corticospinal tract by two-tensor streamline tractography: method and clinical assessment using fMRI. Neuroimage. 2009;47:T98–T106.

    Article  Google Scholar 

  14. Ye C, Yang Z, Ying SH, Prince JL. Segmentation of the cerebellar peduncles using a random forest classifier and a multi-object geometric deformable model: application to spinocerebellar ataxia type 6. Neuroinformatics. 2015;13(3):367–81.

    Article  Google Scholar 

  15. Zhou, Q., O. Michailovich, and Y. Rathi. Resolving complex fibre architecture by means of sparse spherical deconvolution in the presence of isotropic diffusion. In Medical imaging 2014: image processing. 2014. International Society for Optics and Photonics.

  16. Grussu F, Ianuş A, Tur C, Prados F, Schneider T, Kaden E, et al. Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord. Magn Reson Med. 2019;81(2):1247–64.

    Article  Google Scholar 

  17. Kodiweera C, Alexander AL, Harezlak J, McAllister TW, Wu YC. Age effects and sex differences in human brain white matter of young to middle-aged adults: a DTI, NODDI, and q-space study. Neuroimage. 2016;128:180–92.

    Article  Google Scholar 

  18. Lee H-H, Yaros K, Veraart J, Pathan JL, Liang FX, Kim SG, et al. Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI. Brain Struct Funct. 2019;224(4):1469–88.

    Article  Google Scholar 

  19. Duncan NW, Wiebking C, Northoff G. Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans—a review of multimodal imaging studies. Neurosci Biobehav Rev. 2014;47:36–52.

    Article  CAS  Google Scholar 

  20. Stagg CJ, Bachtiar V, Amadi U, Gudberg CA, Ilie AS, Sampaio-Baptista C, et al. Local GABA concentration is related to network-level resting functional connectivity. Elife. 2014;3:e01465.

    Article  Google Scholar 

  21. Fernandez L, Major BP, Teo WP, Byrne LK, Enticott PG. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): a systematic review. Neurosci Biobehav Rev. 2018;86:176–206.

    Article  Google Scholar 

  22. Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21(8):1901–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton W. Swanson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odom, A.D., Swanson, C.W. Cerebellar White Matter Structural Correlates of Locomotor Adaptation. Do They Reflect Neural Adaptation?. Cerebellum 19, 748–750 (2020). https://doi.org/10.1007/s12311-020-01147-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01147-1

Navigation