Skip to main content
Log in

Exogenous Sonic Hedgehog Modulates the Pool of GABAergic Interneurons During Cerebellar Development

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

All cerebellar GABAergic interneurons were derived from a common pool of precursor cells residing in the embryonic ventricular zone (VZ) and migrating in the prospective white matter (PWM) after birth, where both intrinsic and extrinsic factors contribute to regulate their amplification. Among the environmental factors, we focused on Sonic hedgehog (Shh), a morphogen well known to regulate neural progenitor cell proliferation. We asked if and how exogenous Shh treatment affects the lineage of cerebellar GABAergic interneurons. To address these issues, exogenous Shh was administered to embryonic and postnatal organotypic slices. We found that Shh is able to expand the pool of interneuron progenitors residing in the embryonic epithelium and in the postnatal PWM. In particular, Shh signalling pathway was highly mitogenic at early developmental stages of interneuron production, whereas its effect decreased after the first postnatal week. Gene expression analysis of sorted cells and in situ hybridization further showed that immature interneurons express both the Shh receptor patched and the Shh target gene Gli1. Thus, within the interneuron lineage, Shh might exert regulatory functions also in postmitotic cells. On the whole, our data enlighten the role of Shh during cerebellar maturation and further broaden our knowledge on the amplification mechanisms of the interneuron progenitor pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47:201–13.

    Article  CAS  PubMed  Google Scholar 

  2. Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M, Minaki Y, et al. Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun. 2014;5:3337.

    Article  PubMed  Google Scholar 

  3. Yamada M, Seto Y, Taya S, Owa T, Inoue YU, Inoue T, et al. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci. 2014;34:4786–800.

    Article  PubMed  Google Scholar 

  4. Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R. A mammalian helixloop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Bill Chem. 1995;270:8730–38.

    Article  CAS  Google Scholar 

  5. Alder J, Cho NK, Hatten ME. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron. 1996;17:389–99.

    Article  CAS  PubMed  Google Scholar 

  6. Wingate RJT. The rhombic lip and early cerebellar development. Curr Opin Neurobiol. 2001;11:82–8.

    Article  CAS  PubMed  Google Scholar 

  7. Wang VY, Rose MF, Zoghbi H. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48:31–43.

    Article  CAS  PubMed  Google Scholar 

  8. Fink AJ, Englund C, Daza RAM, Pham D, Lau C, Nivison M, et al. Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci. 2006;26:3066–76.

    Article  CAS  PubMed  Google Scholar 

  9. Englund CM, Kowalczyk T, Daza RAM, Dagan A, Lau C, Rose MF, et al. Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci. 2006;26:9184–95.

    Article  CAS  PubMed  Google Scholar 

  10. Carletti B, Rossi F. Neurogenesis in the cerebellum. Neuroscientist. 2008;14:91–100.

    Article  PubMed  Google Scholar 

  11. Hoshino M. Neural subtype specification in the cerebellum and dorsal hindbrain. Dev Growth Differ. 2012;54:317–26.

    Article  CAS  PubMed  Google Scholar 

  12. Dahmane N, Ruiz I, Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126:3089–100.

    PubMed  Google Scholar 

  13. Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL. Spatial pattern of Sonic hedgehog signaling through Gli genes during cerebellum development. Development. 2004;131:5581–90.

    Article  CAS  PubMed  Google Scholar 

  14. Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP. Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol. 2004;270:393–410.

    Article  CAS  PubMed  Google Scholar 

  15. Huang X, Liu J, Ketova T, Fleming JT, Grover VK, Cooper MK, et al. Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development. Proc Natl Acad Sci USA. 2010;107:8422–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic hedgehog. Neuron. 1999;22:103–14.

    Article  CAS  PubMed  Google Scholar 

  17. Wallace VA. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol. 1999;9:445–8.

    Article  CAS  PubMed  Google Scholar 

  18. Petralia RS, Wang YX, Mattson MP, Yao PJ. Subcellular distribution of patched and smoothened in the cerebellar neurons. Cerebellum. 2012;11:972–81.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Bragina O, Sergejeva S, Serg M, Zarkovsky T, Maloverjan A, Kogerman P, et al. Smoothened agonist augments proliferation and survival of neural cells. Neurosci Lett. 2010;482:81–5.

    Article  CAS  PubMed  Google Scholar 

  20. Corrales JD, Blaess S, Mahoney EM, Joyner AL. The level of Sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development. 2006;133:1811–21.

    Article  CAS  PubMed  Google Scholar 

  21. Flora A, Klisch TJ, Schuster G, Zoghbi HY. Deletion of Atoh1 distrups Sonic hedgehog signalling in the developing cerebellum and prevents medulloblastoma. Science. 2009;326:1424–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lee EY, Ji H, Ouyang Z, Zhou B, Ma W, Vokes SA, et al. Hedgehog pathway-regulated gene networks in cerebellum development and tumorigenesis. Proc Natl Acad Sci USA. 2010;107:9736–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lee SJ, Lindsey S, Graves B, Yoo S, Olson JM, Langhans SA. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma. PloS One. 2013;8:e71455.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fleming JT, He W, Hao C, Ketova T, Pan FC, Wright CC, et al. The Purkinje neuron acts as a central regulator of spatially and functionally distinct cerebellar precursors. Dev Cell. 2013;27:278–92.

    Article  CAS  PubMed  Google Scholar 

  25. Weisheit G, Gliem M, Endl E, Pfeffer PL, Busslinger M, Schilling K. Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons. Eur J Neurosci. 2006;24:466–78.

    Article  PubMed  Google Scholar 

  26. Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, et al. Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci. 2009;29:7079–91.

    Article  CAS  PubMed  Google Scholar 

  27. Pfeffer PL, Payer B, Reim G, di Magliano MP, Busslinger M. The activation and maintenance of Pax2 expression at the mid-hindbrain boundary is controlled by separate enhancers. Development. 2002;129:307–18.

    CAS  PubMed  Google Scholar 

  28. Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of Hedgegog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 2002;16:2743–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kenney AM, Rowitch DH. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol. 2000;20:9055–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zhang L, Goldman JE. Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron. 1996;16:47–54.

    Article  PubMed  Google Scholar 

  31. Schilling C, Oberdick J, Rossi F, Baader SL. Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol. 2008;130:601–15.

    Article  CAS  PubMed  Google Scholar 

  32. Maricich SM, Herrup K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol. 1999;41:281–94.

    Article  CAS  PubMed  Google Scholar 

  33. Simat M, Parpan F, Fritschy J-M. Heterogeneity of glycinergic and GABAergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol. 2007;500:71–83.

    Article  CAS  PubMed  Google Scholar 

  34. Huangfu D, Anderson KV. Signaling from Smo to Ci/Gli:conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development. 2006;133:3–14.

    Article  CAS  PubMed  Google Scholar 

  35. Jacob L, Lum L. Deconstructing the hedgehog pathway in development and disease. Science. 2007;318:66–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Varjosalo M, Taipale J. Hedgehog signaling. J Cell Sci. 2007;120:3–6.

    Article  CAS  PubMed  Google Scholar 

  37. Taipale J, Cooper MK, Maiti T, Beachy PA. Patched acts catalytically to suppress the activity of smoothened. Nature. 2002;418:892–7.

    Article  CAS  PubMed  Google Scholar 

  38. Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, et al. The tumor-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature. 1996;384:129–34.

    Article  CAS  PubMed  Google Scholar 

  39. Leto K, Bartolini A, Rossi F. The prospective white matter: an atypical neurogenic niche in the developing cerebellum. Arch Ital Biol. 2010;138:137–46.

    Google Scholar 

  40. Leto K, Rolando C, Rossi F. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms. Front Neuroanat. 2012;6:1–10.

    Article  Google Scholar 

  41. Bouslama-Oueghlani L, Wehrlé R, Doulazmi M, Chen XR, Jaudon F, Lemaigre-Dubreuil Y, Rivals I, Sotelo C, Dusart I. Purkinje cell maturation participates in the control of oligodendrocyte differentiation: role of Sonic hedgehog and vitronectin. 2012;7:e49015.

  42. Ghoumari AM, Wehrlé R, Bernard O, Sotelo C, Dusart I. Implication of Bcl-2 and caspase-3 in age-related Purkinje cell death in murine organotypic culture: an in vitro model to study apoptosis. Eur J Neurosci. 2000;12:2935–49.

    Article  CAS  PubMed  Google Scholar 

  43. Charytoniuk D, Porcel B, Rodriguez Gomez J, Faure H, Ruat M, Traiffort E. Sonic hedgehog signaling in the developing and adult brain. J Physiol Paris. 2002;96:9–16.

    Article  CAS  PubMed  Google Scholar 

  44. Pons S, Trejo JL, Martínez-Morales JR, Martí E. Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development. 2001;128:1481–92.

    CAS  PubMed  Google Scholar 

  45. Yokoo H, Isoda K, Yamanouchi H, Sasaki A, Hirato J, Nakazato Y, et al. Cerebellar basket cells of Creutzfeldt-Jakob disease: immunohistochemical and ultrastructural study. Pathol Int. 2000;50:291–6.

    Article  CAS  PubMed  Google Scholar 

  46. Bullock WM, Bolognani F, Botta P, Valenzuela CF, Perrone-Bizzozero NI. Schizophenia-like GABAergic gene expression deficits in cerebellar Golgi cells from rats chronically exposed to low-dose phencyclidine. Neurochem Int. 2009;55:775–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Huard JM, Forster CC, Carter ML, Sicinski P, Ross ME. Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development. 1999;126:1927–35.

    CAS  PubMed  Google Scholar 

  48. Leto K, Bartolini A, Di Gregorio A, Imperiale D, De Luca A, Parmigiani E, et al. Modulation of cell-cycle dynamics is required to regulate the number of cerebellar GABAergic interneurons and their rhythm of maturation. Development. 2011;138:3463–72.

    Article  CAS  PubMed  Google Scholar 

  49. Fucillo M, Joyner AL, Fishell G. Morphogen to mitogen: the multiple roles of hedgehog signaling in vertebrate neural development. Nat Rev Neurosci. 2006;7:772–83.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to dedicate this work in memoriam of Prof F. Rossi, for continuous support and encouragement. We thank Dr. Paola Bernabei for help in FAC Sorter analysis. This work was supported by grants from Ministero dell’Università e della Ricerca (PRIN 2009 program no. TBCZJB to F.R. and Ricerca Fondo per l’Incentivazione della Ricerca di Base research grant RBFR10A01S to K.L.).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Leto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Luca, A., Parmigiani, E., Tosatto, G. et al. Exogenous Sonic Hedgehog Modulates the Pool of GABAergic Interneurons During Cerebellar Development. Cerebellum 14, 72–85 (2015). https://doi.org/10.1007/s12311-014-0596-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0596-x

Keywords

Navigation