Skip to main content
Log in

Proceedings of the workshop on Cerebellum, Basal Ganglia and Cortical Connections Unmasked in Health and Disorder Held in Brno, Czech Republic, October 17th, 2013

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The proceedings of the workshop synthesize the experimental, preclinical, and clinical data suggesting that the cerebellum, basal ganglia (BG), and their connections play an important role in pathophysiology of various movement disorders (like Parkinson’s disease and atypical parkinsonian syndromes) or neurodevelopmental disorders (like autism). The contributions from individual distinguished speakers cover the neuroanatomical research of complex networks, neuroimaging data showing that the cerebellum and BG are connected to a wide range of other central nervous system structures involved in movement control. Especially, the cerebellum plays a more complex role in how the brain functions than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127(Pt 3):561–74.

    PubMed  Google Scholar 

  2. Beudel M, Galama S, Leenders KL, de Jong BM. Time estimation in Parkinson's disease and degenerative cerebellar disease. Neuroreport. 2008;19(10):1055–8.

    Article  PubMed  Google Scholar 

  3. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14(2):225–32.

    Article  CAS  PubMed  Google Scholar 

  4. Dreher JC, Grafman J. The roles of the cerebellum and basal ganglia in timing and error prediction. Eur J Neurosci. 2002;16(8):1609–19.

    Article  PubMed  Google Scholar 

  5. Iacoboni M. Playing tennis with the cerebellum. Nat Neurosci. 2001;4(6):555–6.

    Article  CAS  PubMed  Google Scholar 

  6. Jahanshahi M, Jones CR, Zijlmans J, et al. Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson's disease. Brain. 2010;133(Pt 3):727–45.

    Article  PubMed  Google Scholar 

  7. Bares M, Lungu OV, Liu T, Waechter T, Gomez CM, Ashe J. The Neural Substrate of Predictive Motor Timing in Spinocerebellar Ataxia. Cerebellum. 2011;10(2):233–44.

    Article  PubMed  Google Scholar 

  8. Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    Article  CAS  PubMed  Google Scholar 

  9. Vogel M. The cerebellum. Am J Psychiatry. 2005;162(7):1253.

    Article  PubMed  Google Scholar 

  10. Manto M et al. Consensus Paper: Roles of the Cerebellum in Motor Control- The Diversity of Ideas on Cerebellar Involvement in Movement. Cerebellum. 2012;11(2):457–87.

    Article  PubMed  Google Scholar 

  11. Murdoch BE. The cerebellum and language: Historical perspective and review. Cortex. 2010;46(7):858–68.

    Article  PubMed  Google Scholar 

  12. Cerminara NL, Aoki H, Loft M, Sugihara I, Apps R. Structural Basis of Cerebellar Microcircuits in the Rat. J Neurosci. 2013;33(42):16427–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Pijpers A, Apps R, Pardoe J, Voogd J, Ruigrok TJH. Precise Spatial Relationships between Mossy Fibers and Climbing Fibers in Rat Cerebellar Cortical Zones. J Neurosci. 2006;26(46):12067–80.

    Article  CAS  PubMed  Google Scholar 

  14. Voogd J et al. In: Manto M, editor. Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections, in Handbook of the Cerebellum and Cerebellar Disorders. Netherlands: Springer Science: Dordrecht; 2013. p. 377–436.

    Chapter  Google Scholar 

  15. Alexander GE, Delong MR, Strick PL. Parallel organization of functionally segrated circuits linking basal gangli and cortex. Ann Rev Neurosci. 1986;9:357–81.

    Article  CAS  PubMed  Google Scholar 

  16. Percheron GG, Francois C, Talbi B, Yelnik J, Fénelon G. The primate motor thalamus. Brain Res Rev. 1996;22(2):93–181.

    Article  CAS  PubMed  Google Scholar 

  17. Kuramoto E, Furuta T, Nakamura KC, Unzai T, Hioki H, Kaneko T. Two Types of Thalamocortical Projections from the Motor Thalamic Nuclei of the Rat: A Single Neuron-Tracing Study Using Viral Vectors. Cereb Cortex. 2009;19(9):2065–77.

    Article  PubMed  Google Scholar 

  18. Groenewegen HJ, Witter MP. In: Paxinos G, editor. Thalamus, in The rat nervous system. San Diego: Elsevier; 2004. p. 407–53.

    Google Scholar 

  19. Ichinohe N, Iwatsuki H, Shoumura K. Intrastriatal targets of projection fibers from the central lateral nucleus of the rat thalamus. Neurosci Letts. 2001;302(2–3):105–8.

    Article  CAS  Google Scholar 

  20. Ichinohe N, Mori F, Shoumura K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 2000;880(1–2):191–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.

    Article  CAS  PubMed  Google Scholar 

  22. Paxinos GWC. The rat brain in stereotaxic co-ordinates. 4th ed. Florida, USA: Academic Press; 1998.

    Google Scholar 

  23. Yin HH, Knowlton BJ, Balleine BW. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci. 2004;19(1):181–9.

    Article  PubMed  Google Scholar 

  24. Lebel C, Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci. 2011;31(30):10937–47.

    Article  CAS  PubMed  Google Scholar 

  25. White T, Nelson M, Lim KO. Diffusion tensor imaging in psychiatric disorders. Top Magn Reson Imaging. 2008;19(2):97–109.

    Article  PubMed  Google Scholar 

  26. Seal ML, Yucel M, Fornito A, Wood SJ, Harrison BJ, Walterfang M, et al. Abnormal white matter microstructure in schizophrenia: a voxelwise analysis of axial and radial diffusivity. Schizophrenia Res. 2008;101(1–3):106–10.

    Article  Google Scholar 

  27. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17(3):1429–36.

    Article  PubMed  Google Scholar 

  28. Pasternak O, Westin CF, Bouix S, Seidman LJ, Goldstein JM, Woo TU, et al. Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J Neurosci. 2012;32(48):17365–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Clemm von Hohenberg C, Pasternak O, Kubicki M, Ballinger T, Vu MA, Swisher T, et al. White Matter Microstructure in Individuals at Clinical High Risk of Psychosis: A Whole-Brain Diffusion Tensor Imaging Study. Schizophrenia Bull. 2014;40(4):895–903.

    Article  Google Scholar 

  30. Radoeva PD, Coman IL, Antshel KM, Fremont W, McCarthy CS, Kotkar A, et al. Atlas-based white matter analysis in individuals with velo-cardio-facial syndrome (22q11.2 deletion syndrome) and unaffected siblings. Behav Brain Funct. 2012;8(1):38.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kikinis Z, Asami T, Bouix S, Finn CT, Ballinger T, Tworog-Dube E, et al. Reduced fractional anisotropy and axial diffusivity in white matter in 22q11.2 deletion syndrome: A pilot study. Schizophrenia Res. 2012;141(1):35–9.

    Article  CAS  Google Scholar 

  32. Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Res. 2009;108(1–3):3–10.

    Article  Google Scholar 

  33. Melonakos ED, Shenton ME, Rathi Y, Terry DP, Bouix S, Kubicki M. Voxel-based morphometry (VBM) studies in schizophrenia-can white matter changes be reliably detected with VBM? Psychiatry Res. 2011;193(2):65–70.

    Article  PubMed Central  PubMed  Google Scholar 

  34. White T, Ehrlich S, Ho BC, Manoach DS, Caprihan A, Schulz SC, et al. Spatial characteristics of white matter abnormalities in schizophrenia. Schizophrenia Bull. 2013;39(5):1077–86.

    Article  Google Scholar 

  35. Huttlova J, Kikinis Z, Kerkovsky M, Bouix S, Vu MA, Makris N, et al. Abnormalities in Myelination of the Superior Cerebellar Peduncle in Patients with Schizophrenia and Deficits in Movement Sequencing. Cerebellum. 2014;13(4):415–24.

    Article  PubMed  Google Scholar 

  36. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230(1):77–87.

    Article  PubMed  Google Scholar 

  37. Quan M, Lee SH, Kubicki M, Kikinis Z, Rathi Y, Seidman LJ, et al. White matter tract abnormalities between rostral middle frontal gyrus, inferior frontal gyrus and striatum in first-episode schizophrenia. Schizophrenia Res. 2013;145(1–3):1–10.

    Article  Google Scholar 

  38. Liu H, Fan G, Xu K, Wang F. Changes in cerebellar functional connectivity and anatomical connectivity in schizophrenia: a combined resting-state functional MRI and diffusion tensor imaging study. J Magn Res Imaging. 2011;34(6):1430–8.

    Article  Google Scholar 

  39. Kasparek T, Rehulova J, Kerkovsky M, Sprlakova A, Mechl M, Mikl M. Cortico-cerebellar functional connectivity and sequencing of movements in schizophrenia. BMC Psychiatr. 2012;12:17.

    Article  Google Scholar 

  40. Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54:1786–94.

    Article  CAS  PubMed  Google Scholar 

  41. Koeppen AH, Ramirez RL, Bjork ST, Bauer P, Feustel PJ. The reciprocal cerebellar circuitry in human hereditary ataxia. Cerebellum. 2013;12:493–503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rabe K, Kraff O, Minnerop M, Beck A, Schöls L, Ladd M, Timmann D. Cerebellar pathology in Friedreich’s Ataxia: Atrophied nuclei with normal iron content. Submitted.

  43. Maderwald S, Thürling M, Küper M, Theysohn N, Müller O, Beck A, et al. Direct visualization of cerebellar nuclei in patients with focal cerebellar lesions and its application for lesion-symptom mapping. Neuroimage. 2012;63:1421–31.

    Article  CAS  PubMed  Google Scholar 

  44. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage. 2009;46:39–46.

    Article  PubMed  Google Scholar 

  45. Ilg W, Christensen A, Mueller OM, Goericke SL, Giese MA, Timmann D. Effects of cerebellar lesions on working memory interacting with motor tasks of different complexities. J Neurophysiol. 2013;110:2337–49.

    Article  PubMed  Google Scholar 

  46. Küper M, Thürling M, Stefanescu R, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor somatotopy in the cerebellar dentate nucleus–an FMRI study in humans. Hum Brain Mapp. 2012;33:2741–9.

    Article  PubMed  Google Scholar 

  47. Thürling M, Küper M, Stefanescu R, Maderwald S, Gizewski ER, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: A 7 T MRI study. Neuroimage. 2011;57:1184–91.

    Article  PubMed  Google Scholar 

  48. Thürling M, Hautzel H, Küper M, Stefanescu MR, Maderwald S, Ladd ME, et al. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: a 7 T fMRI study. Neuroimage. 2012;62:1537–50.

    Article  PubMed  Google Scholar 

  49. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  50. Emir UE, Auerbach EJ, Moortele PF, Marjańska M, Ugurbil K, Terpstra M, et al. Regional neurochemical profiles in the human brain measured by 1H MRS at 7 T using local B1 shimming. NMR Biomed. 2012;25:152–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Öz G. MR Spectroscopy in Health and Disease. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the Cerebellum and Cerebellar Disorders. Dordrecht: Springer; 2013. p. 713–33.

    Chapter  Google Scholar 

  52. Öz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, et al. Clinical Proton MR Spectroscopy in Central Nervous System Disorders. Radiology. 2014;270(3):658–79.

    Article  PubMed  Google Scholar 

  53. Öz G, Hutter D, Tkáč I, Clark HB, Gross MD, Jiang H, et al. Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord. 2010;25:1253–61.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Emir UE, Hutter D, Bushara KO, Gomez CM, Eberly LE and Öz G. MRS Biomarkers of Neurodegeneration in Spinocerebellar Ataxia type 1 (SCA1): Current and Future Potential. 20th Scientific Meeting of the ISMRM. Melbourne, Australia; 2012. pp. 1802.

  55. Öz G, Iltis I, Hutter D, Thomas W, Bushara KO, Gomez CM. Distinct Neurochemical Profiles of Spinocerebellar Ataxias 1, 2, 6, and Cerebellar Multiple System Atrophy. Cerebellum. 2011;10:208–17.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Öz G, Nelson CD, Koski DM, Henry PG, Marjańska M, Deelchand DK, et al. Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci. 2010;30:3831–8.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Öz G, Vollmers ML, Nelson CD, Shanley R, Eberly LE, Orr HT, et al. In vivo monitoring of recovery from neurodegeneration in conditional transgenic SCA1 mice. Exp Neurol. 2011;232:290–8.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Emir UE, Brent Clark H, Vollmers ML, Eberly LE, Öz G. Non-invasive detection of neurochemical changes prior to overt pathology in a mouse model of spinocerebellar ataxia type 1. J Neurochem. 2013;127:660–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  60. Emir UE, Tuite PJ, Öz G. Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. PLoS ONE. 2012;7:e30918.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Kish SJ, Rajput A, Gilbert J, Rozdilsky B, Chang LJ, Shannak K, et al. Elevated gamma-aminobutyric acid level in striatal but not extrastriatal brain regions in Parkinson's disease: correlation with striatal dopamine loss. Ann Neurol. 1986;20:26–31.

    Article  CAS  PubMed  Google Scholar 

  62. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, et al. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994;36:348–55.

    Article  CAS  PubMed  Google Scholar 

  63. Holmay MJ, Terpstra M, Coles LD, Mishra U, Ahlskog M, Öz G, et al. N-acetylcysteine Boosts Brain and Blood Glutathione in Gaucher and Parkinson Diseases. Clin Neuropharmacol. 2013;36:103–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Welsh JP, Ahn ES, Placantonakis DG. Is autism due to brain desynchronization? Int J Dev Neurosci. 2005;23:253–63.

    Article  PubMed  Google Scholar 

  65. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    Article  PubMed  Google Scholar 

  66. Xu D, Liu T, Ashe J, Bushara KO. Role of the olivo-cerebellar system in timing. The J Neurosci. 2006;26:5990–5.

    Article  CAS  Google Scholar 

  67. Liu T, Xu D, Ashe J, Bushara KO. Specificity of inferior olive response to stimulus timing. J Neurophysiol. 2008;100:1557–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Wu X, Ashe J, Bushara KO. Role of olivocerebellar system in timing without awareness. Proc Natl Acad Sci U S A. 2011;108:13818–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This workshop was supported by the project “CEITEC - Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) from European Regional Development Fund and by Ministry of Health of the Czech Republic / Ministry of Health Departmental Research and Development Program III (2010–2015) NT/13437.

The second section of this paper was supported by the MRC (grant G1100626 and a studentship to ML) and the BBSRC (Grant BB/G012717/1).

The fourth section of this paper was supported by the DFG (DFG TI 239/10-1, 10–2) and EU (Marie Curie Initial Training Network, ITN).

The preparation of the fifth section of this manuscript was supported by the National Institute of Neurological Disorders and Stroke (NINDS) grant R01 NS070815 (GÖ). The Center for Magnetic Resonance Research at the University of Minnesota is supported by National Center for Research Resources (NCRR) biotechnology research resource grant P41 RR008079, National Institute of Biomedical Imaging and Bioengineering (NIBIB) grant P41 EB015894 and the Institutional Center Cores for Advanced Neuroimaging award P30 NS076408.

Conflict of Interest

There are no potential conflicts of interest in the submission and no financial and personal relationship that might bias our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bareš.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bareš, M., Apps, R., Kikinis, Z. et al. Proceedings of the workshop on Cerebellum, Basal Ganglia and Cortical Connections Unmasked in Health and Disorder Held in Brno, Czech Republic, October 17th, 2013. Cerebellum 14, 142–150 (2015). https://doi.org/10.1007/s12311-014-0595-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0595-y

Keywords

Navigation