Skip to main content
Log in

Altered Microstructural Connectivity of the Superior Cerebellar Peduncle is Related to Motor Dysfunction in Children with Autistic Spectrum Disorders

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Many studies have reported motor impairments in autistic spectrum disorders (ASD). However, the brain mechanism underlying motor impairment in ASD remains unclear. Recent neuroimaging studies have suggested that underconnectivity between the cerebellum and other brain regions contributes to the features of ASD. In this study, we investigated the microstructural integrity of the cerebellar pathways, including the superior, middle, and inferior cerebellar peduncles, of children with and without ASD by using diffusion tensor imaging (DTI) tractography to determine whether the microstructural integrity of the cerebellar pathways is related to motor function in children with ASD. Thirteen children with ASD and 11 age-, gender-, handedness-, and IQ-matched typically developing (TD) controls were enrolled in this study. DTI outcome measurements, such as fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), for the cerebellar pathways were calculated. The Movement Assessment Battery for Children 2 (M-ABC 2) was used for assessing motor functions. There were no significant differences between the two groups in RD. However, compared to the TD subjects, patients with ASD had a significantly lower FA in the right superior cerebellar peduncle and lower AD in the left superior cerebellar peduncle, in addition to a significantly lower score in ball skills and the total test score of M-ABC 2. There was a significant positive correlation between the total test score of M-ABC 2 and FA in the right superior cerebellar peduncle in the ASD group. These findings suggest that the altered microstructural integrity of the superior cerebellar peduncle may be related to motor impairment in ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th Editon-Text Revision. Washington, DC: 2000.

  2. Fournier KA, Hass CJ, Naik SK, Lodha N, Cauraugh JH. Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. J Autism Dev Disord. 2010;40(10):1227–40.

    Article  PubMed  Google Scholar 

  3. Green D, Charman T, Pickles A, Chandler S, Loucas T, Simonoff E, et al. Impairment in movement skills of children with autistic spectrum disorders. Dev Med Child Neurol. 2009;51(4):311–6.

    Article  PubMed  Google Scholar 

  4. Teitelbaum P, Teitelbaum O, Nye J, Fryman J, Maurer RG. Movement analysis in infancy may be useful for early diagnosis of autism. Proc Natl Acad Sci U S A. 1998;95(23):13982–7.

    Article  PubMed  CAS  Google Scholar 

  5. Minshew NJ, Sung K, Jones BL, Furman JM. Underdevelopment of the postural control system in autism. Neurology. 2004;63(11):2056–61.

    Article  PubMed  Google Scholar 

  6. Rinehart NJ, Tonge BJ, Bradshaw JL, Iansek R, Enticott PG, McGinley J. Gait function in high-functioning autism and Asperger’s disorder: evidence for basal-ganglia and cerebellar involvement? Eur Child Adolesc Psychiatry. 2006;15(5):256–64.

    Article  PubMed  Google Scholar 

  7. Papadopoulos N, McGinley J, Tonge BJ, Bradshaw JL, Saunders K, Rinehart NJ. An investigation of upper limb motor function in high functioning autism and Asperger’s disorder using a repetitive Fitts’ aiming task. Res Autism Spectr Disord. 2012;6(1):286–92.

    Article  Google Scholar 

  8. Glazebrook C, Gonzalez D, Hansen S, Elliott D. The role of vision for online control of manual aiming movements in persons with autism spectrum disorders. Autism. 2009;13(4):411–33.

    Article  PubMed  Google Scholar 

  9. Stanley-Cary C, Rinehart N, Tonge B, White O, Fielding J. Greater disruption to control of voluntary saccades in autistic disorder than Asperger’s disorder: evidence for greater cerebellar involvement in autism? Cerebellum. 2011;10(1):70–80.

    Article  PubMed  Google Scholar 

  10. Jasmin E, Couture M, McKinley P, Reid G, Fombonne E, Gisel E. Sensori-motor and daily living skills of preschool children with autism spectrum disorders. J Autism Dev Disord. 2009;39(2):231–41.

    Article  PubMed  Google Scholar 

  11. Leary MR, Hill DA. Moving on: autism and movement disturbance. Ment Retard. 1996;34(1):39–53.

    PubMed  CAS  Google Scholar 

  12. Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, et al. A clinicopathological study of autism. Brain. 1998;121(Pt 5):889–905.

    Article  PubMed  Google Scholar 

  13. Bauman M, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology. 1985;35(6):866–74.

    Article  PubMed  CAS  Google Scholar 

  14. Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, et al. Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol. 2002;22(2):171–5.

    Article  PubMed  Google Scholar 

  15. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81.

    Article  PubMed  CAS  Google Scholar 

  16. Kemper TL, Bauman M. Neuropathology of infantile autism. J Neuropathol Exp Neurol. 1998;57(7):645–52.

    Article  PubMed  CAS  Google Scholar 

  17. Wegiel J, Kuchna I, Nowicki K, Imaki H, Marchi E, Ma SY, et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 2010;119(6):755–70.

    Article  PubMed  Google Scholar 

  18. Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123(Pt 4):836–44.

    Article  PubMed  Google Scholar 

  19. Webb SJ, Sparks BF, Friedman SD, Shaw DW, Giedd J, Dawson G, et al. Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Res. 2009;172(1):61–7.

    Article  PubMed  Google Scholar 

  20. Hardan AY, Minshew NJ, Harenski K, Keshavan MS. Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry. 2001;40(6):666–72.

    Article  PubMed  CAS  Google Scholar 

  21. Kleiman MD, Neff S, Rosman NP. The brain in infantile autism: are posterior fossa structures abnormal? Neurology. 1992;42(4):753–60.

    Article  PubMed  CAS  Google Scholar 

  22. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001;57(2):245–54.

    Article  PubMed  CAS  Google Scholar 

  23. McAlonan GM, Cheung V, Cheung C, Suckling J, Lam GY, Tai KS, et al. Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain. 2005;128(Pt 2):268–76.

    PubMed  Google Scholar 

  24. Rippon G, Brock J, Brown C, Boucher J. Disordered connectivity in the autistic brain: challenges for the “new psychophysiology”. Int J Psychophysiol. 2007;63(2):164–72.

    Article  PubMed  Google Scholar 

  25. Wass S. Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn. 2011;75(1):18–28.

    Article  PubMed  Google Scholar 

  26. Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15(7–8):435–55.

    Article  PubMed  Google Scholar 

  27. Tournier JD, Mori S, Leemans A. Diffusion tensor imaging and beyond. Magn Reson Med. 2011;65(6):1532–56.

    Article  PubMed  Google Scholar 

  28. Budde MD, Xie M, Cross AH, Song SK. Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci. 2009;29(9):2805–13.

    Article  PubMed  CAS  Google Scholar 

  29. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage. 2003;20(3):1714–22.

    Article  PubMed  Google Scholar 

  30. Shukla DK, Keehn B, Lincoln AJ, Muller RA. White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry. 2010;49(12):1269–78.

    PubMed  Google Scholar 

  31. Pardini M, Garaci FG, Bonzano L, Roccatagliata L, Palmieri MG, Pompili E, et al. White matter reduced streamline coherence in young men with autism and mental retardation. Eur J Neurol. 2009;16(11):1185–90.

    Article  PubMed  CAS  Google Scholar 

  32. Jou RJ, Jackowski AP, Papademetris X, Rajeevan N, Staib LH, Volkmar FR. Diffusion tensor imaging in autism spectrum disorders: preliminary evidence of abnormal neural connectivity. Aust N Z J Psychiatry. 2011;45(2):153–62.

    Article  PubMed  Google Scholar 

  33. Fletcher PT, Whitaker RT, Tao R, DuBray MB, Froehlich A, Ravichandran C, et al. Microstructural connectivity of the arcuate fasciculus in adolescents with high-functioning autism. NeuroImage. 2010;51(3):1117–25.

    Article  PubMed  Google Scholar 

  34. Catani M, Jones DK, Daly E, Embiricos N, Deeley Q, Pugliese L, et al. Altered cerebellar feedback projections in Asperger syndrome. NeuroImage. 2008;41(4):1184–91.

    Article  PubMed  Google Scholar 

  35. Cheng Y, Chou KH, Chen IY, Fan YT, Decety J, Lin CP. Atypical development of white matter microstructure in adolescents with autism spectrum disorders. NeuroImage. 2010;50(3):873–82.

    Article  PubMed  CAS  Google Scholar 

  36. Allen G, Muller RA, Courchesne E. Cerebellar function in autism: functional magnetic resonance image activation during a simple motor task. Biol Psychiatry. 2004;56(4):269–78.

    Article  PubMed  Google Scholar 

  37. Jeong JW, Chugani DC, Behen ME, Tiwari VN, Chugani HT. Altered white matter structure of the dentatorubrothalamic pathway in children with autistic spectrum disorders. Cerebellum. 2012;11(4):957–71.

    Article  PubMed  Google Scholar 

  38. Kanaan RA, Shergill SS, Barker GJ, Catani M, Ng VW, Howard R, et al. Tract-specific anisotropy measurements in diffusion tensor imaging. Psychiatry Res. 2006;146(1):73–82.

    Article  PubMed  Google Scholar 

  39. Catani M. Jones DK, ffytche DH. Perisylvian language networks of the human brain. Ann Neurol. 2005;57(1):8–16.

    Article  PubMed  Google Scholar 

  40. Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205–23.

    Article  PubMed  CAS  Google Scholar 

  41. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.

    Article  PubMed  CAS  Google Scholar 

  42. Henderson S, Sugden D, Barnett AL. The movement assessment battery for children. 2nd ed. London: The Psychological Corporation; 2007.

    Google Scholar 

  43. Johnson BP, Rinehart NJ, Papadopoulos N, Tonge B, Millist L, White O, et al. A closer look at visually guided saccades in autism and Asperger’s disorder. Front Integr Neurosci. 2012;6:99. doi:10.3389/fnint.2012.00099.

    Article  PubMed  Google Scholar 

  44. Whyatt CP, Craig CM. Motor skills in children aged 7-10 years, diagnosed with autism spectrum disorder. J Autism Dev Disord. 2012;42(9):1799–809.

    Article  PubMed  Google Scholar 

  45. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45(2):265–9.

    Article  PubMed  CAS  Google Scholar 

  46. Matsumoto R, Okada T, Mikuni N, Mitsueda-Ono T, Taki J, Sawamoto N, et al. Hemispheric asymmetry of the arcuate fasciculus: a preliminary diffusion tensor tractography study in patients with unilateral language dominance defined by Wada test. J Neurol. 2008;255(11):1703–11.

    Article  PubMed  CAS  Google Scholar 

  47. Taoka T, Kin T, Nakagawa H, Hirano M, Sakamoto M, Wada T, et al. Diffusivity and diffusion anisotropy of cerebellar peduncles in cases of spinocerebellar degenerative disease. NeuroImage. 2007;37(2):387–93.

    Article  PubMed  Google Scholar 

  48. Hong JH, Kim OL, Kim SH, Lee MY, Jang SH. Cerebellar peduncle injury in patients with ataxia following diffuse axonal injury. Brain Res Bull. 2009;80(1–2):30–5.

    Article  PubMed  Google Scholar 

  49. Huang H, Zhang J, van Zijl PC, Mori S. Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach. Magn Reson Med. 2004;52(3):559–65.

    Article  PubMed  Google Scholar 

  50. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage. 2007;36(3):630–44.

    Article  PubMed  Google Scholar 

  51. Mori S, Wakana S, Van Zijl PCM, Nagae-Poetscher LM. MRI atlas of human white matter. Am Soc Neuroradiology. 2005.

  52. Salamon N, Sicotte N, Drain A, Frew A, Alger JR, Jen J, et al. White matter fiber tractography and color mapping of the normal human cerebellum with diffusion tensor imaging. J Neuroradiol. 2007;34(2):115–28.

    Article  PubMed  CAS  Google Scholar 

  53. Steriade M. Two channels in the cerebellothalamocortical system. J Comp Neurol. 1995;354(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  54. Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9(1):22–8.

    Article  PubMed  Google Scholar 

  55. Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11(2):336–51.

    Article  PubMed  Google Scholar 

  56. Noriuchi M, Kikuchi Y, Yoshiura T, Kira R, Shigeto H, Hara T, et al. Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Res. 2010;1362:141–9.

    Article  PubMed  CAS  Google Scholar 

  57. Schwartz ED, Cooper ET, Fan Y, Jawad AF, Chin CL, Nissanov J, et al. MRI diffusion coefficients in spinal cord correlate with axon morphometry. Neuroreport. 2005;16(1):73–6.

    Article  PubMed  Google Scholar 

  58. Wu Q, Butzkueven H, Gresle M, Kirchhoff F, Friedhuber A, Yang Q, et al. MR diffusion changes correlate with ultra-structurally defined axonal degeneration in murine optic nerve. NeuroImage. 2007;37(4):1138–47.

    Article  PubMed  Google Scholar 

  59. Yip J, Marcon R, Kemper TL, Bauman M, Blatt GJ. The olivocerebellar projection in autism: using the intermediate filament protein peripherin as a marker for climbing fibers. International Meeting for Autism Research (Abstract), May 2005. http://www.autism-insar.org/imfar-annual-meeting/archive-abstracts.

  60. Wegiel J, Wisniewski T, Chauhan A, Chauhan V, Kuchna I, Nowicki K, et al. Type, topography and sequelae of neuropathological changes shaping clinical phenotype of autism. In: Chauhan A, Chauhan V, Brown WT, editors. Autism: oxidative stress, inflammation, and immune abnormalities. Florida: CRC Press; 2010. p. 1–34.

    Google Scholar 

  61. Blatt GJ, Fatemi SH. Alterations in GABAergic biomarkers in the autism brain: research findings and clinical implications. Anat Rec (Hoboken). 2011;294(10):1646–52.

    Article  CAS  Google Scholar 

  62. Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry. 2002;52(8):805–10.

    Article  PubMed  CAS  Google Scholar 

  63. Yip J, Soghomonian JJ, Blatt GJ. Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol. 2007;113(5):559–68.

    Article  PubMed  CAS  Google Scholar 

  64. Yip J, Soghomonian JJ, Blatt GJ. Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: an in situ hybridization study. Autism Res. 2009;2(1):50–9.

    Article  PubMed  Google Scholar 

  65. Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation. 2011;8:52. doi:10.1186/1742.2094.8.52.

    Article  PubMed  CAS  Google Scholar 

  66. Blatt GJ. GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int Rev Neurobiol. 2005;71:167–78.

    Article  PubMed  CAS  Google Scholar 

  67. Paus T, Toro R. Could sex differences in white matter be explained by g ratio? Front Neuroanat. 2009;3:14. doi:10.3389/neuro.05.014.2009.

    Article  PubMed  Google Scholar 

  68. Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, et al. Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci. 2006;26(11):3066–76.

    Article  PubMed  CAS  Google Scholar 

  69. Fatemi SH, Folsom TD, Reutiman TJ, Abu-Odeh D, Mori S, Huang H, et al. Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr Res. 2009;112(1–3):46–53.

    Article  PubMed  Google Scholar 

  70. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16(6):645–9.

    Article  PubMed  CAS  Google Scholar 

  71. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.

    Article  PubMed  Google Scholar 

  72. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.

    Article  PubMed  CAS  Google Scholar 

  73. Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008;31(7):361–70.

    Article  PubMed  CAS  Google Scholar 

  74. Paus T. Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn. 2010;72(1):26–35.

    Article  PubMed  Google Scholar 

  75. David FJ, Baranek GT, Giuliani CA, Mercer VS, Poe MD, Thorpe DE. A pilot study: coordination of precision grip in children and adolescents with high functioning autism. Pediatr Phys Ther. 2009;21(2):205–11.

    Article  PubMed  Google Scholar 

  76. Schmitz C, Martineau J, Barthelemy C, Assaiante C. Motor control and children with autism: deficit of anticipatory function? Neurosci Lett. 2003;348(1):17–20.

    Article  PubMed  CAS  Google Scholar 

  77. Gidley Larson JC, Mostofsky SH. Evidence that the pattern of visuomotor sequence learning is altered in children with autism. Autism Res. 2008;1(6):341–53.

    Article  PubMed  Google Scholar 

  78. Izawa J, Pekny SE, Marko MK, Haswell CC, Shadmehr R, Mostofsky SH. Motor learning relies on integrated sensory inputs in ADHD, but over-selectively on proprioception in autism spectrum conditions. Autism Res. 2012;5(2):124–36.

    Article  PubMed  Google Scholar 

  79. Paton B, Hohwy J, Enticott PG. The rubber hand illusion reveals proprioceptive and sensorimotor differences in autism spectrum disorders. J Autism Dev Disord. 2012;42(9):1870–83.

    Article  PubMed  Google Scholar 

  80. Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.

    PubMed  CAS  Google Scholar 

  81. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  Google Scholar 

  82. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage. 2012;59(2):1560–70.

    Article  PubMed  Google Scholar 

  83. Allen G, Courchesne E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am J Psychiatry. 2003;160(2):262–73.

    Article  PubMed  Google Scholar 

  84. Hodge SM, Makris N, Kennedy DN, Caviness Jr VS, Howard J, McGrath L, et al. Cerebellum, language, and cognition in autism and specific language impairment. J Autism Dev Disord. 2010;40(3):300–16.

    Article  PubMed  Google Scholar 

  85. Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24(9):1085–104.

    Article  PubMed  Google Scholar 

  86. Lebel C, Benner T, Beaulieu C. Six is enough? Comparison of diffusion parameters measured using six or more diffusion-encoding gradient directions with deterministic tractography. Magn Reson Med. 2012;68(2):474–83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Osaka University Program for the Support of Networking among Present and Future Women Researchers. We thank Mayumi Wada for helping with our volumetric analysis and are grateful to all the children and parents who participated in this study.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masako Taniike.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanaie, R., Mohri, I., Kagitani-Shimono, K. et al. Altered Microstructural Connectivity of the Superior Cerebellar Peduncle is Related to Motor Dysfunction in Children with Autistic Spectrum Disorders. Cerebellum 12, 645–656 (2013). https://doi.org/10.1007/s12311-013-0475-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0475-x

Keywords

Navigation