Skip to main content

Advertisement

Log in

3D preoperative planning for humeral head selection in total shoulder arthroplasty

  • Original Article
  • Published:
MUSCULOSKELETAL SURGERY Aims and scope Submit manuscript

Abstract

Background

Recreation of glenohumeral biomechanics and humeral anatomy has been shown to improve outcomes in shoulder arthroplasty. Recent research has focused on utilizing simulation software and intraoperative instrumentation to improve glenoid implant selection and positioning, but no study had evaluated the reliability of new features in 3D preoperative planning software for humeral planning in total shoulder arthroplasty.

Materials and methods

Preoperative plans were created for 26 patients using three different simulation software programs: an independent preoperative planning simulation (IPPS) software (OrthoVis) and two automated manufacturers preoperative simulation systems: ArthrexVIP™ (AMPS I) and Tornier Blueprint™ 3D Planning (AMPS II). Preoperative plans were compared for reliability and consistency among different software systems based on available variables including humeral head diameter (HD) and head height (HH).

Results

The measured HD was consistent between the three systems with a maximum mean difference of 0.2 mm for HD among IPPS, AMPS I, and AMPS II (p = 0.964). There was a significant difference in measured humeral HH with 1.7 mm difference between IPPS and AMPS II (p ≤ 0.001). The strongest correlation when comparing humeral head measurements (diameter or height) obtained from all systems was seen between IPPS and AMPS I for humeral HD (r = 0.8; p ≤ 0.001).

Conclusion

There was a high level of consistency between independent and manufacturer preoperative planning software for humeral head measurements. These preoperative planning systems can improve efficiency and workflow during surgery by guiding surgeons on implant size selection to optimally reconstruct the glenohumeral kinematics, in order to improve patient outcomes.

Level of evidence

Level III, study of nonconsecutive patients and without a universally applied “gold” standard study of diagnostic test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Menge TJ, Boykin RE, Byram IR, Bushnell BD (2014) A comprehensive approach to glenohumeral arthritis. South Med J 107(9):567–573. https://doi.org/10.14423/SMJ.0000000000000166

    Article  PubMed  Google Scholar 

  2. Iannotti JP, Greeson C, Downing D, Sabesan V, Bryan JA (2012) Effect of glenoid deformity on glenoid component placement in primary shoulder arthroplasty. J Shoulder Elbow Surg 21(1):48–55. https://doi.org/10.1016/j.jse.2011.02.011

    Article  PubMed  Google Scholar 

  3. Sabesan V, Callanan M, Sharma V, Iannotti JP (2014) Correction of acquired glenoid bone loss in osteoarthritis with a standard versus an augmented glenoid component. J Shoulder Elbow Surg 23(7):964–973. https://doi.org/10.1016/j.jse.2013.09.019

    Article  PubMed  Google Scholar 

  4. Sabesan VJ, Callanan M, Youderian A, Iannotti JP (2014) 3D CT assessment of the relationship between humeral head alignment and glenoid retroversion in glenohumeral osteoarthritis. J Bone Joint Surg Am 96(8):e64. https://doi.org/10.2106/JBJS.L.00856

    Article  PubMed  Google Scholar 

  5. Hendel MD, Bryan JA, Barsoum WK, Rodriguez EJ, Brems JJ, Evans PJ, Iannotti JP (2012) Comparison of patient-specific instruments with standard surgical instruments in determining glenoid component position: a randomized prospective clinical trial. J Bone Joint Surg Am 94(23):2167–2175. https://doi.org/10.2106/JBJS.K.01209

    Article  PubMed  Google Scholar 

  6. Hoenecke HR Jr, Hermida JC, Flores-Hernandez C, D’Lima DD (2010) Accuracy of CT-based measurements of glenoid version for total shoulder arthroplasty. J Shoulder Elbow Surg 19(2):166–171. https://doi.org/10.1016/j.jse.2009.08.009

    Article  PubMed  Google Scholar 

  7. Iannotti JP, Weiner S, Rodriguez E, Subhas N, Patterson TE, Jun BJ, Ricchetti ET (2015) Three-dimensional imaging and templating improve glenoid implant positioning. J Bone Joint Surg Am 97(8):651–658. https://doi.org/10.2106/JBJS.N.00493

    Article  PubMed  Google Scholar 

  8. Levy JC, Everding NG, Frankle MA, Keppler LJ (2014) Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty. J Shoulder Elbow Surg 23(10):1563–1567. https://doi.org/10.1016/j.jse.2014.01.051

    Article  PubMed  Google Scholar 

  9. Lewis GS, Bryce CD, Davison AC, Hollenbeak CS, Piazza SJ, Armstrong AD (2010) Location of the optimized centerline of the glenoid vault: a comparison of two operative techniques with use of three-dimensional computer modeling. J Bone Joint Surg Am 92(5):1188–1194. https://doi.org/10.2106/JBJS.I.00131

    Article  PubMed  Google Scholar 

  10. Sabesan V, Callanan M, Sharma V (2014) Guidelines for the selection of optimal glenoid augment size for moderate to severe glenohumeral osteoarthritis. J Shoulder Elbow Surg 23(7):974–981. https://doi.org/10.1016/j.jse.2013.09.022

    Article  PubMed  Google Scholar 

  11. Franta AK, Lenters TR, Mounce D, Neradilek B, Matsen FA III (2007) The complex characteristics of 282 unsatisfactory shoulder arthroplasties. J Shoulder Elbow Surg 16(5):555–562. https://doi.org/10.1016/j.jse.2006.11.004

    Article  PubMed  Google Scholar 

  12. Hasan SS, Leith JM, Campbell B, Kapil R, Smith KL, Matsen FA III (2002) Characteristics of unsatisfactory shoulder arthroplasties. J Shoulder Elbow Surg 11(5):431–441

    Article  Google Scholar 

  13. Iannotti JP, Spencer EE, Winter U, Deffenbaugh D, Williams G (2005) Prosthetic positioning in total shoulder arthroplasty. J Shoulder Elbow Surg 14(1 Suppl S):111S–121S. https://doi.org/10.1016/j.jse.2004.09.026

    Article  PubMed  Google Scholar 

  14. Verborgt O, De Smedt T, Vanhees M, Clockaerts S, Parizel PM, Van Glabbeek F (2011) Accuracy of placement of the glenoid component in reversed shoulder arthroplasty with and without navigation. J Shoulder Elbow Surg 20(1):21–26. https://doi.org/10.1016/j.jse.2010.07.014

    Article  PubMed  Google Scholar 

  15. von Eisenhart-Rothe R, Muller-Gerbl M, Wiedemann E, Englmeier KH, Graichen H (2008) Functional malcentering of the humeral head and asymmetric long-term stress on the glenoid: potential reasons for glenoid loosening in total shoulder arthroplasty. J Shoulder Elbow Surg 17(5):695–702. https://doi.org/10.1016/j.jse.2008.02.008

    Article  Google Scholar 

  16. Gutierrez S, Levy JC, Frankle MA, Cuff D, Keller TS, Pupello DR, Lee WE III (2008) Evaluation of abduction range of motion and avoidance of inferior scapular impingement in a reverse shoulder model. J Shoulder Elbow Surg 17(4):608–615. https://doi.org/10.1016/j.jse.2007.11.010

    Article  PubMed  Google Scholar 

  17. Herrmann S (2016) Shoulder biomechanics. In: Frankle M, Marberry S, Pupello D (eds) Reverse shoulder arthroplasty: biomechanics, clinical techniques, and current technologies. Springer, Cham, pp 21–30. https://doi.org/10.1007/978-3-319-20840-4_2

    Chapter  Google Scholar 

  18. Keener JD, Chalmers PN, Yamaguchi K (2017) The humeral implant in shoulder arthroplasty. J Am Acad Orthop Surg 25(6):427–438. https://doi.org/10.5435/JAAOS-D-15-00682

    Article  PubMed  Google Scholar 

  19. Kircher J, Wiedemann M, Magosch P, Lichtenberg S, Habermeyer P (2009) Improved accuracy of glenoid positioning in total shoulder arthroplasty with intraoperative navigation: a prospective-randomized clinical study. J Shoulder Elbow Surg 18(4):515–520. https://doi.org/10.1016/j.jse.2009.03.014

    Article  PubMed  Google Scholar 

  20. Nguyen D, Ferreira LM, Brownhill JR, King GJ, Drosdowech DS, Faber KJ, Johnson JA (2009) Improved accuracy of computer assisted glenoid implantation in total shoulder arthroplasty: an in-vitro randomized controlled trial. J Shoulder Elbow Surg 18(6):907–914. https://doi.org/10.1016/j.jse.2009.02.022

    Article  PubMed  Google Scholar 

  21. Sabesan VJ, Ackerman J, Sharma V, Baker KC, Kurdziel MD, Wiater JM (2015) Glenohumeral mismatch affects micromotion of cemented glenoid components in total shoulder arthroplasty. J Shoulder Elbow Surg 24(5):814–822. https://doi.org/10.1016/j.jse.2014.10.004

    Article  PubMed  Google Scholar 

  22. Youderian AR, Ricchetti ET, Drews M, Iannotti JP (2014) Determination of humeral head size in anatomic shoulder replacement for glenohumeral osteoarthritis. J Shoulder Elbow Surg 23(7):955–963. https://doi.org/10.1016/j.jse.2013.09.005

    Article  PubMed  Google Scholar 

  23. Savin DD, Piponov H, Goldstein J, Youderian AR (2017) Humeral head sizing using extra-articular landmarks on conventional radiographs. Surg Radiol Anat. https://doi.org/10.1007/s00276-017-1833-z

    Article  PubMed  Google Scholar 

  24. Lee CS, Davis SM, Lane CJ, Koonce RC, Hartman AP, Ball K, Esch JC (2015) Reliability and accuracy of digital templating for the humeral component of total shoulder arthroplasty. Shoulder Elbow 7(1):29–35. https://doi.org/10.1177/1758573214550838

    Article  PubMed  Google Scholar 

  25. Verborgt O, Vanhees M, Heylen S, Hardy P, Declercq G, Bicknell R (2014) Computer navigation and patient-specific instrumentation in shoulder arthroplasty. Sports Med Arthrosc 22(4):e42–e49. https://doi.org/10.1097/JSA.0000000000000045

    Article  PubMed  Google Scholar 

  26. Parsons IMT, Weldon EJ III, Titelman RM, Smith KL (2004) Glenohumeral arthritis and its management. Phys Med Rehabil Clin N Am 15(2):447–474. https://doi.org/10.1016/j.pmr.2003.12.001

    Article  PubMed  Google Scholar 

  27. Bellanova L, Paul L, Docquier PL (2013) Surgical guides (patient-specific instruments) for pediatric tibial bone sarcoma resection and allograft reconstruction. Sarcoma 2013:787653. https://doi.org/10.1155/2013/787653

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dai KR, Yan MN, Zhu ZA, Sun YH (2007) Computer-aided custom-made hemipelvic prosthesis used in extensive pelvic lesions. J Arthroplasty 22(7):981–986. https://doi.org/10.1016/j.arth.2007.05.002

    Article  PubMed  Google Scholar 

  29. Deshmukh TR, Kuthe AM, Vaibhav B (2010) Preplanning and simulation of surgery using rapid modelling. J Med Eng Technol 34(4):291–294. https://doi.org/10.3109/03091901003753058

    Article  CAS  PubMed  Google Scholar 

  30. Guarino J, Tennyson S, McCain G, Bond L, Shea K, King H (2007) Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. J Pediatr Orthop 27(8):955–960. https://doi.org/10.1097/bpo.0b013e3181594ced

    Article  PubMed  Google Scholar 

  31. Hananouchi T, Saito M, Koyama T, Hagio K, Murase T, Sugano N, Yoshikawa H (2009) Tailor-made surgical guide based on rapid prototyping technique for cup insertion in total hip arthroplasty. Int J Med Robot 5(2):164–169. https://doi.org/10.1002/rcs.243

    Article  PubMed  Google Scholar 

  32. Izatt MT, Thorpe PL, Thompson RG, D’Urso PS, Adam CJ, Earwaker JW, Labrom RD, Askin GN (2007) The use of physical biomodelling in complex spinal surgery. Eur Spine J 16(9):1507–1518. https://doi.org/10.1007/s00586-006-0289-3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, El Batti S (2016) Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery 159(6):1485–1500. https://doi.org/10.1016/j.surg.2015.12.017

    Article  PubMed  Google Scholar 

  34. Yamazaki M, Akazawa T, Okawa A, Koda M (2007) Usefulness of three-dimensional full-scale modeling of surgery for a giant cell tumor of the cervical spine. Spinal Cord 45(3):250–253. https://doi.org/10.1038/sj.sc.3101959

    Article  CAS  PubMed  Google Scholar 

  35. Yang JC, Ma XY, Lin J, Wu ZH, Zhang K, Yin QS (2011) Personalised modified osteotomy using computer-aided design-rapid prototyping to correct thoracic deformities. Int Orthop 35(12):1827–1832. https://doi.org/10.1007/s00264-010-1155-9

    Article  PubMed  Google Scholar 

  36. Yang M, Li C, Li Y, Zhao Y, Wei X, Zhang G, Fan J, Ni H, Chen Z, Bai Y, Li M (2015) Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine 94(8):e582. https://doi.org/10.1097/MD.0000000000000582

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang YZ, Chen B, Lu S, Yang Y, Zhao JM, Liu R, Li YB, Pei GX (2011) Preliminary application of computer-assisted patient-specific acetabular navigational template for total hip arthroplasty in adult single development dysplasia of the hip. Int J Med Robot 7(4):469–474. https://doi.org/10.1002/rcs.423

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. J. Sabesan.

Ethics declarations

Conflict of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: Diego J. L. Lima none; Jacob Markel none; Jonathan P. Yawman none; James D. Whaley none; Vani J. Sabesan is a paid consultant for Arthrex Inc., receives research support from Exactech Inc., and received research support from Pacira Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, D.J.L., Markel, J., Yawman, J.P. et al. 3D preoperative planning for humeral head selection in total shoulder arthroplasty. Musculoskelet Surg 104, 155–161 (2020). https://doi.org/10.1007/s12306-019-00602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12306-019-00602-5

Keywords

Navigation