Skip to main content
Log in

Evolution process of W−Pb−Zn mineralizing fluid: implication from the carbonate-hosted Subok deposit in the Hwanggangri mineralized district, South Korea

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The evolutionary process and spatiotemporal variation of W and Pb−Zn mineralizing fluids was investigated for the Subok deposit, a representative W−Pb−Zn deposit in the Hwanggangri mineralized district (HMD) in South Korea. The deposit was emplaced in Paleozoic carbonate rocks, which were intruded by Cretaceous Muamsa granite. The paragenetic sequence is characterized by early pyrrhotite-scheelite-arsenopyrite and late arsenopyrite-sphalerite-galena assemblages. In terms of spatial distribution, pyrrhotite and scheelite were dominant in the lower part, whereas arsenopyrite mainly occurred in the upper part. The upward increasing δ34SH2S values of ore-bearing fluids range from 1.0 to 5.9‰, corresponding to a magmatic origin. In this deposit, according to As content of arsenopyrite, fluid inclusion, and sulfur stable isotope, the early W and late Pb−Zn mineralization was controlled by decreasing temperature (425–590 to 380–450 °C), pressure (0.54–5.13 to 0.38–3.99 kbar), and sulfur fugacity of the uprising ore-bearing fluids. In the HMD, wolframite and molybdenite mainly occur in the granitic rock, whereas scheelite is precipitated in the carbonate host rock under decreasing oxygen fugacity, salinity, and pH, and the input of Ca from the host rock in the distal area. Late Pb−Zn mineralization was achieved by decreasing temperature and pressure of ore-bearing fluids and mixing with meteoric water in the distal area. The mineral zonation and physicochemical variation of W and Pb−Zn mineralizations can be applicable as indicators for the exploration of ore deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, T., van Achterberg, E., Ryan, C.G., and Lang, J.R., 2004, Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology, 32, 117–120. https://doi.org/10.1130/G19950.1

    Article  Google Scholar 

  • Bauer, M.E., Burisch, M., Ostendorf, J., Krause, J., Frenzel, M., and Seifert, T., 2019, Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Mineralium Deposita, 54, 237–262. https://doi.org/10.1007/s00126-018-0850-0

    Article  Google Scholar 

  • Baumer, A., Caruba, R., and Guy, B., 1985, Experimental study of hydrothermal transformations scheelite ↔ ferberite: preliminary results. Bulletin de Minéralogie, 108, 15–20.

    Article  Google Scholar 

  • Chen, L., Li, X.H., Li, J.W., Hofstra, A.H., Liu, Y., and Koenig, A.E., 2015, Extreme variation of sulfur isotopic compositions in pyrite from the Qiuling sediment-hosted gold deposit, West Qinling orogen, central China: an in situ SIMS study with implications for the source of sulfur. Mineralium Deposita, 50, 643–656. https://doi.org/10.1007/s00126-015-0597-9

    Article  Google Scholar 

  • Choi, J., Shin, D., and Im, H., 2018, Regional variations of sulfur isotope compositions for metallic deposits in the Taebaeksan Mineralized District, South Korea. Geosciences Journal, 22, 79–89. https://doi.org/10.1007/s12303-017-0057-x

    Article  Google Scholar 

  • Choi, S.G., Kang, J., and Lee, J.H., 2019, Predictive exploration of the Cretaceous major mineral deposits in Korea: focusing on W−Mo mineralization. Economic and Environmental Geology, 52, 323–336. https://doi.org/10.9719/EEG.2019.52.5.323

    Google Scholar 

  • Choi, W., Park, C., and Song, Y., 2020, Multistage W-mineralization and magmatic-hydrothermal fluid evolution: microtextural and geochemical footprints in scheelite from the Weondong W-skarn deposit, South Korea. Ore Geology Reviews, 116, 103219. https://doi.org/10.1016/j.oregeorev.2019.103219

    Article  Google Scholar 

  • Chon, H.T. and Shimazaki, H., 1986, Iron, manganese and cadmium contents of sphalerites and their genetical implications to hydrothermal metallic ore deposits in Korea. Journal of the Korean Institute of Mining Geology, 19, 139–149.

    Google Scholar 

  • Chough, S.K., Kwon, S.T., Ree, J.H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews, 52, 175–235. https://doi.org/10.1016/S0012-8252(00)00029-5

    Article  Google Scholar 

  • Cluzel, D., Cabet, J.P., and Lapierre, H., 1990, Geodynamics of the Ogcheon belt (South Korea). Tectonophysics, 25, 61–73. https://doi.org/10.1016/0040-1951(90)90187-D

    Google Scholar 

  • Cook, N.J., Ciobanue, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B., and Melcher, F., 2009, Trace and minor elements in sphalerite: a LA-ICP-MS study. Geochimica et Cosmochimica Acta, 73, 4761–4791. https://doi.org/10.1016/j.gca.2009.05.045

    Article  Google Scholar 

  • Corbella, M., Ayora, C., and Cardellach, E., 2004, Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi valley-type deposits. Mineralium Deposita, 39, 344–357. https://doi.org/10.1007/s00126-004-0412-5

    Article  Google Scholar 

  • Driesner, T. and Heinrich, C.A., 2007, The System H2O−NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71, 4880–4901. https://doi.org/10.1016/j.gca.2006.01.033

    Article  Google Scholar 

  • Frenzel, M., Hirsch, T., and Gutzmer, J., 2016, Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type-A meta-analysis. Ore Geology Reviews, 76, 52–78. https://doi.org/10.1016/j.oregeorev.2015.12.017

    Article  Google Scholar 

  • Gottesmann, W. and Gottesmann, B.S., 2009, Sphalerite composition and ore genesis at the Tumurtijn-ovoo Fe−Mn−Zn skarn deposit, Mongolia. Neues Jahrbuch für Mineralogie-Abhandlungen, 185, 249–280. https://doi.org/10.1127/0077-7757/2009/0123

    Article  Google Scholar 

  • Guo, X., Wu, K., Cai, Y., Gan, C., Liu, W., and Zhou, Y., 2021, Petrogenesis of ore-forming granites with implications for W mineralization in the Huangsha-Tieshanlong Deposit, Southern Jiangxi Province, South China. Journal of Geochemical Exploration, 224, 106736. https://doi.org/10.1016/j.gexplo.2021.106736

    Article  Google Scholar 

  • Hoefs, J., 2004, Stable Isotope Geochemistry (5th edition). Springer, Heidelberg, 244 p.

    Book  Google Scholar 

  • Im, H., Jeong, J.Y., and Shin, D., 2020, Genetic environment of W skarn and Pb−Zn vein mineralization associated with the Imog granite in the Taebaeksan Mineralized District, South Korea. Ore Geology Reviews, 126, 103721. https://doi.org/10.1016/j.oregeorev.2020.103721

    Article  Google Scholar 

  • Im, H., Shin, D., Jeong, J., and Lee, M., 2018, Spatio-temporal variation of polymetallic mineralization in the Wooseok deposit. Economic and Environmental Geology, 51, 493–507. https://doi.org/10.9719/EEG.2018.51.6.493

    Google Scholar 

  • Ishihara, S., Kajiwara, Y., and Jin, M.S., 2002, Possible carbonate origin of ore sulfur from Geumseong Mo deposit, South Korea. Resource Geology, 52, 279–282. https://doi.org/10.1111/j.1751-3928.2002.tb00138.x

    Article  Google Scholar 

  • Jo, J., Jeong, Y., and Shin, D., 2021, Regional variations of sulfur isotope compositions for metallic deposits in South Korea. Resource Geology, 71, 202–225. https://doi.org/10.1111/rge.12259

    Article  Google Scholar 

  • Kang, J.H., Hayasaka, Y., and Ryoo, C.R., 2012, Tectonic evolution of the central Ogcheon belt, Korea. Journal of the Petrological Society of Korea, 21, 129–150.

    Article  Google Scholar 

  • Kihm, Y.H., Kim, J.H., and Koh, H.J., 1996, Geology of the Deogsan-Myeon area, Jecheon-gun, Chungcheongbuk-do, Korea: contact between the Choseon and Ogcheon supergroups. Journal of the Geological Society of Korea, 32, 483–499.

    Google Scholar 

  • Kihm, Y.H., Kim, J.H., and Lee, J.U., 1999, Geological structures of the Choseon and Ogcheon Supergroups in the Deoksan-Cheongpung area, Jecheon-gun, Chungcheongbuk-do, Korea. Journal of the Geological Society of Korea, 35, 233–252.

    Google Scholar 

  • Kim, J., Yi, K., Jeong, Y.J., and Cheong, C.S., 2011, Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean peninsula. Gondwana Research, 20, 608–620. https://doi.org/10.1016/j.gr.2010.12.005

    Article  Google Scholar 

  • KORES (Korea Resources Corporation), 1990, Ore deposits of Korea. Korea Resources Corporation, Seoul, 12, 104–105, 664 p.

    Google Scholar 

  • KORES (Korea Resources Corporation), 2006, Report of Subok (tungsten) mine drilling result. Korea Resources Corporation, Seoul, 8 p.

    Google Scholar 

  • Kretschmar, U. and Scott, S., 1976, Phase relations involving arsenopyrite in the system Fe−As−S and their application. The Canadian Mineralogist, 14, 364–386.

    Google Scholar 

  • Kubo, T., Nakato T., and Uchida, E., 1992, An experimental study on partitioning of Zn, Fe, Mn and Cd between sphalerite and aqueous chloride solution. Mining Geology, 42, 301–309. https://doi.org/10.11456/shigenchishitsu1992.42.301

    Google Scholar 

  • Launay, G., Sizaret, S., Lach, P., Melleton, J., Gloaguen, E., and Poujol, M., 2021, Genetic relationship between greisenization and Sn−W mineralizations in vein and greisen deposits: insights from the Panasqueira deposit (Portugal). BSGF-Earth Sciences Bulletin, 192, 2. https://doi.org/10.1051/bsgf/2020046

    Article  Google Scholar 

  • Lecumberri-Sanchez, P., Vieira, R., Heinrich, C.A., Pinto, F., and Wälle, M., 2017, Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology, 45, 579–582. https://doi.org/10.1130/G38974.1

    Article  Google Scholar 

  • Lee, I.S. and Park, H.I., 1982, Fluid inclusion studies on the Wolak tungsten-molybdenum deposits, Korea. Journal of the Korean Institute of Mining Geology, 15, 17–32.

    Google Scholar 

  • Lee, M., Shin, D., Yoo, B., Im, H., Pak, S., and Choi, S., 2019, LA-ICP-MS trace element analysis of arsenopyrite from the Samgwang gold deposit, South Korea, and its genetic implications. Ore Geology Reviews, 114, 103147. https://doi.org/10.1016/j.oregeorev.2019.103147

    Article  Google Scholar 

  • Lee, S.G., Shin, S.C., Kim, K.H., Lee, T., Koh, H., and Song, Y.S., 2010, Petrogenesis of three Cretaceous granites in the Okcheon Metamorphic Belt, South Korea: geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, 17, 87–101. https://doi.org/10.1016/j.gr.2009.04.012

    Article  Google Scholar 

  • Lentz, D.R., 2002, Sphalerite and arsenopyrite at the Brunswick No. 12 massive-sulfide deposit, Bathurst Camp, New Brunswick: constraints on P-T evolution. The Canadian Mineralogist, 40, 19–31. https://doi.org/10.2113/gscanmin.40.1.19

    Article  Google Scholar 

  • Lepetit, P., Bente, K., Doering, T., and Luckhaus, S., 2003, Crystal chemistry of Fe-containing sphalerites. Physics and Chemistry of Minerals, 30, 185–191. https://doi.org/10.1007/s00269-003-0306-6

    Article  Google Scholar 

  • Li, W.S., Ni, P., Pan, J.Y., Fan, M.S., Chen, L.L., Zhang, D., Wu, X.W., and Gao, Y., 2021, Constraints on the timing and genetic link of scheelite-and wolframite-bearing quartz veins in the Chuankou W ore field, South China. Ore Geology Reviews, 104122. https://doi.org/10.1016/j.oregeorev.2021.104122

  • Lim, O., Yu, J.H., Koh, S.M., and Heo, C.H., 2013, Mineralogy and chemical compositions of Dangdu Pb−Zn deposit. Economic and Environmental Geology, 46, 23–140. https://doi.org/10.9719/EEG.2013.46.2.123

    Article  Google Scholar 

  • Liu, G., Yuan, F., Deng, Y., Jowitt, S.M., Sun, W., White, N.C., Yang, D., Li, X., Zhou T., and Huizenga, J.M., 2018, The genesis of the Hehuashan Pb−Zn deposit and implications for the Pb−Zn prospectivity of the Tongling district, Middle-Lower Yangtze River Metallogenic Belt, Anhui Province, China. Ore Geology Reviews, 101, 105–121. https://doi.org/10.1016/j.oregeorev.2018.07.014

    Article  Google Scholar 

  • Liu, Y., Jiang, S., and Bagas, L., 2016, The genesis of metal zonation in the Weilasituo and Bairendaba Ag−Zn−Pb−Cu−(Sn−W) deposits in the shallow part of a porphyry Sn−W−Rb system, Inner Mongolia, China. Ore Geology Reviews, 75, 150–173. https://doi.org/10.1016/j.oregeorev.2015.12.006

    Article  Google Scholar 

  • Lu, H.Z., Liu, Y., Wang, C., Xu, Y., and Li, H., 2003, Mineralization and fluid inclusion study of the Shizhuyuan W−Sn−Bi−Mo−F skarn deposit, Hunan Province, China. Economic Geology, 98, 955–974. https://doi.org/10.2113/gsecongeo.98.5.955

    Article  Google Scholar 

  • Mao, J.W., Li, H.Y., Shimazaki, H., Raimbault, L., and Guy, B., 1996, Geology and metallogeny of the Shizhuyuan skarn-greisen deposit, Hunan Province, China. International Geology Review, 38, 1020–1039. https://doi.org/10.1080/00206819709465379

    Article  Google Scholar 

  • Martin, J.D. and Gil, A.S.I., 2005, An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to 850 °C and up to 1 GPa. Geochimica et Cosmochimica Acta, 69, 995–1006. https://doi.org/10.1016/j.gca.2004.08.009

    Article  Google Scholar 

  • Meinert, L.D., Dipple, G.M., and Nicolescu, S., 2005, World skarn deposits. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P. (eds.), Economic Geology 100th Anniversary Volume. Society of Economic Geologists, p. 299–336. https://doi.org/10.5382/AV100.11

  • Morey, A.A., Tomkins, A.G., Bierlein, F.P., Weinberg, R.F., and Davidson, G.J., 2008, Bimodal distribution of gold in pyrite and arsenopyrite: examples from the Archean Boorara and Bardoc shear systems, Yilgarn craton, Western Australia. Economic Geology, 103, 599–614.

    Article  Google Scholar 

  • Newberry, R.J., 1982, Tungsten-bearing skarns of the Sierra Nevada; I, The Pine Creek Mine, California. Economic Geology, 77, 823–844. https://doi.org/10.2113/gsecongeo.103.3.599

    Article  Google Scholar 

  • Ohmoto, H. and Rye, R.O., 1979, Isotopes of sulfur and carbon. In: Barnes, H.L. (ed.), Geochemistry of Hydrothermal Ore Deposits (2nd edition). Wiley, New York, p. 509–567.

    Google Scholar 

  • Park, H.P. and Park, H.I., 1979, Studies on the fluid inclusions of Useok Polymetallic mineral deposits. Journal of Geological Society of Korea, 15, 282–294.

    Google Scholar 

  • Peterson, E.C. and Mavrogenes, J.A., 2014, Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea. Geology, 42, 383–386. https://doi.org/10.1130/G35286.1

    Article  Google Scholar 

  • Pilewski, J., Sharma, S., Agrawal, V., Hakala, J.A., and Stuckman, M.Y., 2019, Effect of maturity and mineralogy on fluid-rock reactions in the Marcellus Shale. Environmental Science: Processes & Impacts, 21, 845–855. https://doi.org/10.1039/C8EM00452H

    Google Scholar 

  • Rafal’skiy, R.P., Bryzgalin, O.V., and Fedorov, P.L., 1985, Tungsten migration and scheelite deposition under hydrothermal conditions. Geochemistry International, 21, 1–13.

    Google Scholar 

  • Rasmussen, K.L., Lentz, D.R., Falck, H., and Pattison, D.R., 2011, Felsic magmatic phases and the role of late-stage aplitic dykes in the formation of the world-class Cantung tungsten skarn deposit, Northwest Territories, Canada. Ore Geology Reviews, 41, 75–111. https://doi.org/10.1016/j.oregeorev.2011.06.011

    Article  Google Scholar 

  • Reedman, A.J., Fletcher, C.J.N., Evans, R.B., Workman, D.R., Yoon, K.S., Rhyu, H.S., Jeong, S.W., and Park, J.N., 1973, The geology of the Hwanggangni mining district, Republic of Korea. Anglo-Korean Mineral Exploration Group. Report of Geological and Mineral Institute of Korea, Seoul, 118 p.

  • Roedder, E., 1984, The origin of inclusions. In: Roedder, E. (ed.), Fluid Inclusions. Reviews in Mineralogy, Mineralogical Society of America, 12, p. 11–46.

  • Sasaki, A. and Ishihara, S., 1980, Sulfur isotope characteristics of granitoids and related mineral deposits in Japan. Proceedings of Fifth Quadrennial IAGOD Symposium, Snowbird, USA, Aug. 17, 1978, p. 325–335.

  • Schwartz, M.O., 2000, Cadmium in zinc deposits: economic geology of a polluting element. International Geology Review, 42, 445–469. https://doi.org/10.1080/00206810009465091

    Article  Google Scholar 

  • Scott, S.D. and Barnes, H.L., 1971, Sphalerite geothermometry and geobarometry. Economic Geology, 66, 653–669. https://doi.org/10.2113/gsecongeo.66.4.653

    Article  Google Scholar 

  • Seal, R.R., 2006, Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61, 633–677. https://doi.org/10.2138/rmg.2006.61.12

    Article  Google Scholar 

  • Sharp, Z.D., Essene, E.J., and Kelly, W.C., 1985, A reexamination of the arsenopyrite geothermometer: pressure considerations and applications to natural assemblages. The Canadian Mineralogist, 23, 517–534.

    Google Scholar 

  • Shin, D.B. and Lee, I.S., 2002, Carbonate-hosted talc deposits in the contact aureole of igneous intrusion (Hwanggangri Mineralized Zone, South Korea): geochemistry, phase relationships, and stable isotope studies. Ore Geology Reviews, 22, 17–39.

    Article  Google Scholar 

  • Shu, Q., Chang, Z., and Mavrogenes, J., 2021, Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential: an example at the Haobugao Zn−Pb skarn, China. Geology, 49, 473–477. https://doi.org/10.1130/G48348.1

    Article  Google Scholar 

  • Sillitoe, R.H., 2010, Porphyry copper systems. Economic Geology, 105, 3–41. https://doi.org/10.2113/gsecongeo.105.1.3

    Article  Google Scholar 

  • Smith, D.J., Naden, J., Jenkin, G.R., and Keith, M., 2017, Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems. Ore Geology Reviews, 89, 772–779. https://doi.org/10.1016/j.oregeorev.2017.06.028

    Article  Google Scholar 

  • So, C.S., Rye, D.M., and Shelton, K.L., 1983, Carbon, hydrogen, oxygen, and sulfur isotope and fluid inclusion study of the Weolag tungsten-molybdenum deposit, Republic of Korea; fluid histories of metamorphic and ore-forming events. Economic Geology, 78, 1551–1573. https://doi.org/10.2113/gsecongeo.78.8.1551

    Article  Google Scholar 

  • So, C.S. and Yun, S.T., 1992, Geochemistry and genesis of hydrothermal Au−Ag−Pb−Zn deposits in the Hwanggangri mineralized district, Republic of Korea. Economic Geology, 87, 2056–2084. https://doi.org/10.2113/gsecongeo.87.8.2056

    Article  Google Scholar 

  • So, C.S. and Yun, S.T., 1994, Origin and evolution of W−Mo-producing fluids in a granitic hydrothermal system; geochemical studies of quartz vein deposits around the Susan Granite, Hwanggangri District, Republic of Korea. Economic Geology, 89, 246–267. https://doi.org/10.2113/gsecongeo.89.2.246

    Article  Google Scholar 

  • So, C.S., Yun, S.T., and Koh, Y.K., 1993, Mineralogic, fluid inclusion, and stable isotope evidence for the genesis of carbonate-hosted Pb−Zn(−Ag) orebodies of the Taebaek deposit, Republic of Korea. Economic Geology, 88, 855–872. https://doi.org/10.2113/gsecongeo.88.4.855

    Article  Google Scholar 

  • Steele-MacInnis, M., 2018, Fluid inclusions in the system H2O−NaCl−CO2: an algorithm to determine composition, density and isochore. Chemical Geology, 498, 31–44. https://doi.org/10.1016/j.chemgeo.2018.08.022

    Article  Google Scholar 

  • Takahashi, R., Matsueda, H., Okrugin, V.M., and Ono, S., 2006, Polymetallic and Au−Ag mineralizations at the Mutnovskoe Deposit in South Kamchatka, Russia. Resource Geology, 56, 141–156. https://doi.org/10.1111/j.1751-3928.2006.tb00275.x

    Article  Google Scholar 

  • Thiessen, E.J., Gleeson, S.A., Bennett, V., and Creaser, R.A., 2016, The Tiger deposit: a carbonate-hosted, magmatic-hydrothermal gold deposit, Central Yukon, Canada. Economic Geology, 111, 421–446. https://doi.org/10.2113/econgeo.111.2.421

    Article  Google Scholar 

  • Wen, H., Zhu, C., Zhang, Y., Cloquet, C., Fan, H., and Fu, S., 2016, Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits. Scientific Reports, 6, 1–8. https://doi.org/10.1038/srep25273

    Google Scholar 

  • Wood, S.A. and Samson, I.M., 2000, The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology, 95, 143–182. https://doi.org/10.2113/gsecongeo.95.1.143

    Google Scholar 

  • Wu, S.H., Mao, J.W., Yuan, S.D., Dai, P., and Wang, X.D., 2017, Mineralogy, fluid inclusion petrography, and stable isotope geochemistry of Pb−Zn−Ag veins at the Shizhuyuan deposit, Hunan Province, southeastern China. Mineralium Deposita, 53, 89–103. https://doi.org/10.1007/s00126-017-0725-9

    Article  Google Scholar 

  • Xie, G., Mao, J., Zhao, H., Wei, K., Jin, S., Pan, H., and Ke, Y., 2011, Timing of skarn deposit formation of the Tonglushan ore district, southeastern Hubei Province, middle lower Yangtze river valley metallogenic belt and its implications. Ore Geology Reviews, 43, 62–77. https://doi.org/10.1016/j.oregeorev.2011.05.005

    Article  Google Scholar 

  • Xing, Y., Brugger, J., Tomkins, A., and Shvarov, Y., 2019, Arsenic evolution as a tool for understanding formation of pyritic gold ores. Geology, 47, 335–338. https://doi.org/10.1130/G45708.1

    Article  Google Scholar 

  • Yang, Z., Wang, R., Zhang, W., Chu, Z., Chen, J., Zhu, J., and Zhang, R., 2014, Skarn-type tungsten mineralization associated with the Caledonian (Silurian) Niutangjie granite, northern Guangxi, China. Science China Earth Sciences, 57, 1551–1566. https://doi.org/10.1007/s11430-014-4838-z

    Article  Google Scholar 

  • Ye, L., Cook, N.J., Liu, T., Ciobanu, C.L., Gao, W., and Yang, Y., 2012, The Niujiaotang Cd-rich zinc deposit, Duyun, Guizhou province, southwest China: ore genesis and mechanisms of cadmium concentration. Mineralium Deposita, 47, 683–700. https://doi.org/10.1007/s00126-011-0386-z

    Article  Google Scholar 

  • Yoon, C.H., Kim, C.B., Lee, H.J., and Shimazaki, H., 2003, Sulfur isotope study of Precambrian basement and Mesozoic intrusive rocks in the southwestern part of Ryeongnam Massif, Korea. Resource Geology, 53, 11–20. https://doi.org/10.1111/j.1751-3928.2003.tb00153.x

    Article  Google Scholar 

  • Yun, S., Kim, K.H., and Woo, J.S., 1986, Studies on geology and mineral resources of the Okcheon Belt. Journal of the Korean Institute of Mining Geology, 19, 3–17.

    Google Scholar 

  • Zaw, K., Peters, S.G., Cromie, P., Burrett, C., and Hou, Z., 2007, Nature, diversity of deposit types and metallogenic relations of South China. Ore Geology Reviews, 31, 3–47. https://doi.org/10.1016/j.oregeorev.2005.10.006

    Article  Google Scholar 

  • Zhao, P., Yuan, S., Mao, J., Yuan, Y., Zhao, H., Zhang, D., and Shuang, Y., 2018, Constraints on the timing and genetic link of the large-scale accumulation of proximal W−Sn−Mo−Bi and distal Pb−Zn−Ag mineralization of the world-class Dongpo orefield, Nanling Range, South China. Ore Geology Reviews, 95, 1140–1160. https://doi.org/10.1016/j.oregeorev.2017.12.005

    Article  Google Scholar 

  • Zhou, T., Yuan, F., Yue, S., Liu, X., Zhang, X., and Fan, Y., 2007, Geochemistry and evolution of ore-forming fluids of the Yueshan Cu−Au skarn-and vein-type deposits, Anhui Province, South China. Ore Geology Reviews, 31, 279–303. https://doi.org/10.1016/j.oregeorev.2005.03.016

    Article  Google Scholar 

  • Zhu, C.W., Liao, S.L., Wang, W., Zhang, Y.X., Yang, T., Fan, H.F., and Wen, H.J., 2018, Variations in Zn and S isotope chemistry of sedimentary sphalerite, Wusihe Zn−Pb deposit, Sichuan Province, China. Ore Geology Reviews, 95, 639–648. https://doi.org/10.1016/j.oregeorev.2018.03.018

    Article  Google Scholar 

  • Zhu, C.W., Wen, H.J., Zhang, Y.X., Fu, S.H., Fan, H.F., and Cloquet, C., 2017, Cadmium isotope fractionation in the Fule Mississippi valley-type deposit, southwest China. Mineralium Deposita, 52, 675–686. https://doi.org/10.1007/s00126-016-0691-7

    Article  Google Scholar 

  • Zoheir, B.A., 2008, Structural controls, temperature-pressure conditions and fluid evolution of orogenic gold mineralisation at the Betam mine, south Eastern Desert, Egypt. Mineralium Deposita, 43, 79–95. https://doi.org/10.1007/s00126-007-0156-0

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20214000000500, Training program of CCUS for the green growth) and by the research grant of the Kongju National University in 2022. We are grateful to J.H. Seo (Associate Editor) and two anonymous reviewers for their insightful comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongbok Shin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, H., Shin, D., Yu, B. et al. Evolution process of W−Pb−Zn mineralizing fluid: implication from the carbonate-hosted Subok deposit in the Hwanggangri mineralized district, South Korea. Geosci J 27, 191–208 (2023). https://doi.org/10.1007/s12303-022-0028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-022-0028-8

Key words

Navigation