Skip to main content
Log in

Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is an important plant signaling molecule that has a vital role in abiotic stress tolerance. In the present study, we assessed drought-induced (15 and 30% PEG, polyethylene glycol) damage in wheat (Triticum aestivum L. cv. Prodip) seedlings and mitigation by the synergistic effect of exogenous Arg (0.5 mM l-Arginine) and an NO donor (0.5 mM sodium nitroprusside, SNP). Drought stress sharply decreased the leaf relative water content (RWC) but markedly increased the proline (Pro) content in wheat seedlings. Drought stress caused overproduction of reactive oxygen species (ROS) and methylglyoxal (MG) due to the inefficiency of antioxidant enzymes, the glyoxalase system, and the ascorbate-glutathione pool. However, supplementation with the NO donor and Arg enhanced the antioxidant defense system (both non-enzymatic and enzymatic components) in drought-stressed seedlings. Application of the NO donor and Arg also enhanced the glyoxalase system and reduced the MG content by increasing the activities of the glyoxalase system enzymes (Gly I and Gly II), which restored the leaf RWC and further increased the Pro content under drought stress conditions. Exogenous NO donor and Arg application enhanced the endogenous NO content, which positively regulated the antioxidant system and reduced ROS production. Thus, the present study reveals the crucial roles of Arg and NO in enhancing drought stress tolerance in wheat seedlings by upgrading their water status and reducing oxidative stress and MG toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Addinsoft (2016) XLSTAT V. 2016.04.32525: data analysis and statistics software for Microsoft Excel. Addinsoft, Paris

    Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubiś J (2009) Interaction between polyamine and nitric oxide signaling in adaptive responses to drought in cucumber. J Plant Growth Regul 28:177–186

    Article  CAS  Google Scholar 

  • Arnon DT (1949) Copper enzymes in isolated chloroplasts polyphenaloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teari D (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Belkheiri O, Mulas M (2013) Effect of water stress on growth, water use efficiency and gas exchange as related to osmotic adjustment of two halophytes Atriplex spp. Funct Plant Biol 40:466–474

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48:663–672

    Article  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM, Sandalio LM, del Río LA (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    Article  CAS  Google Scholar 

  • Freedland RA, Crozier GL, Hicks BL, Meijer AJ (1984) Arginine uptake by isolated rat liver mitochondria. Biochim Biophys Acta 802:407–412

    Article  CAS  Google Scholar 

  • Freschi L (2013) Nitric oxide and phytohormone interactions: current status and perspectives. Front Plant Sci 4:398

    Article  Google Scholar 

  • Gan L, Wu X, Zhong Y (2015) Exogenously applied nitric oxide enhances the drought tolerance in hulless barley. Plant Prod Sci 18:52–56

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gonzalez L, Gonzalez-Vilar M (2001) Determination of relative water content. In: Roger MJR (ed) Handbook of plant ecophysiology techniques. Springer, Amsterdam, pp 207–212

    Google Scholar 

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochem 69:2609–2615

    Article  CAS  Google Scholar 

  • Hao GP, Zhang JH (2010) The role of nitric oxide as a bioactive signaling molecule in plants under abiotic stress. In: Hayat S, Mori M, Pichtel J, Ahmad A (eds) Nitric oxide in plant physiology. Wiley, Weinheim, pp 115–138

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2010) Physiological and biochemical mechanisms of nitric oxide induced abiotic stress tolerance in plants. Am J Plant Physiol 5:295–324

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5:353–365

    Article  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeria da Silva JA, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Gill SS, Fujita M (2014) Drought stress responses in plants, oxidative stress and antioxidant defense. In: Tuteja N, Gill SS (eds) Climate change and plant abiotic stress tolerance. Wiley, Weinheim, pp 209–250

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhuyan MHMB, Oku H, Fujita M (2018a) Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiol Biochem 126:173–186

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Oku H, Nahar K, Bhuyan MHMB, Mahmud JA, Baluska F, Fujita M (2018b) Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnol Repo. https://doi.org/10.1007/s11816-018-0480-0

    Article  Google Scholar 

  • Hatamzadeh A, Molaahmad Nalousi A, Ghasemnezhad M, Biglouei MH (2015) The potential of nitric oxide for reducing oxidative damage induced by drought stress in two turfgrass species, creeping bentgrass and tall fescue. Grass Forage Sci 70:538–548

    Article  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  Google Scholar 

  • Hu Y, Ge Y, Zhang C, Ju T, Cheng W (2009) Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regul 59:51–61

    Article  CAS  Google Scholar 

  • Jiang J, Su M, Chen Y, Gao N, Jiao C, Sun Z, Li F, Wang C (2013) Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment. Biologia 68:231–240

    Article  CAS  Google Scholar 

  • Kirkham MB (2005) Principles of soil and plant water relations. Elsevier, Amsterdam

    Google Scholar 

  • Kocheva KV, Kartseva T, Landjeva S, Georgiev GI (2009) Physiological response of wheat seedlings to mild and severe osmotic stress. Cereal Res Commun 37:199–208

    Article  CAS  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Li X, Gong B, Xu K (2014) Interaction of nitric oxide and polyamines involves antioxidants and physiological strategies against chilling-induced oxidative damage in Zingiber officinale Roscoe. Sci Hortic 170:237–248

    Article  CAS  Google Scholar 

  • Monakhova OF, Chernyadev II (2002) Protective role of kartolin-4 in wheat plants exposed to soil drought. Appl Environ Microbiol 38:373–380

    CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015) Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defense and methylglyoxal detoxification systems. AoB Plants 7:1–18

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Mahmud JA, Suzuki T, Fujita M (2016a) Polyamines confer salt tolerance in mung bean by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense and methylgyoxal detoxification systems. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01104

    Article  PubMed  PubMed Central  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016b) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    Article  CAS  Google Scholar 

  • Nasibi F, Heidari T, Asrar Z, Mansoori H (2013) Effect of arginine pre-treatment on nickel accumulation and alleviation of the oxidative stress in Hyoscyamus niger. J Soil Sci Plant Nutr 13:680–689

    Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurat RD, Hancock JT (2002a) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002b) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  Google Scholar 

  • Oz MT, Eyidogan F, Yucel M, Öktem HA (2015) Functional role of nitric oxide under abiotic stress conditions. In: Khan MN, Mobin M, Mohammad F, Corpasn FJ (eds) Nitric oxide action in abiotic stress responses in plants. Springer, New York, pp 21–41

    Google Scholar 

  • Petrov P, Petrova A, Dimitrov I, Tashev T, Olsovska K, Brestic M, Misheva S (2017) Relationships between leaf morpho-anatomy, water status and cell membrane stability in leaves of wheat seedlings subjected to severe soil drought. J Agro Crop Sci. https://doi.org/10.1111/jac.12255

    Article  Google Scholar 

  • Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant Microbe Interact 16:1084–1105

    Article  Google Scholar 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016a) Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00609

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Hossain MS, Mahmud JA, Nahar K, Hasanuzzaman M, Fujita M (2016b) Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiol Mol Biol Plants 22:291–306

    Article  CAS  Google Scholar 

  • Sheokand S, Kumari A, Sawhney V (2008) Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiol Mol Biol Plant 14:355–362

    Article  CAS  Google Scholar 

  • Shi Q, Ding F, Wang X, Wei M (2007) Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol Biochem 45:542–550

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  CAS  Google Scholar 

  • Sotiropoulos TE, Dimassi KN, Therios IN (2005) Effects of l-arginine and l-cysteine on growth, and chlorophyll and mineral contents of shoots of the apple rootstock EM 26 cultured in vitro. Biol Plant 49:443–445

    Article  CAS  Google Scholar 

  • Sung CH, Hong JK (2010) Sodium nitroprusside mediates seedling development and attenuation of oxidative stresses in Chinese cabbage. Plant Biotechnol Rep 4:243–251

    Article  Google Scholar 

  • Tapiero H, Mathé G, Couvreur P, Tew KD (2002) I. Arginine. Biomed Pharmacother 56:439–445

    Article  CAS  Google Scholar 

  • Todd CD, Cooke JEK, Mullen RT, Gifford DJ (2001) Regulation of loblolly pine (Pinus taeda L.) arginase in developing seedling tissue during germination and post-germinative growth. Plant Mol Biol 45:555–565

    Article  CAS  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stressing the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  CAS  Google Scholar 

  • Wang F, Wang Q, Kwon S, Kwak S, Su W (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  CAS  Google Scholar 

  • Wendehenne D, Gould K, Lamotte O, Durner J, Vandelle E, Lecourieux D, Courtois C, Barnavon L, Bentéjac M, Pugin A (2005) NO signaling functions in the biotic and abiotic stress responses. BMC Plant Biol 5:S3

    Article  Google Scholar 

  • Wild R, Ooi L, Srikanth V, Münch G (2012) A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: the N-acetyl-l-cysteine assay. Anal Bioanal Chem 403:2577–2581

    Article  CAS  Google Scholar 

  • Winter G, Todd CD, Trovato M, Forlani G, Funck D (2015) Physiological implications of arginine metabolism in plants. Front Plant Sci 6:534

    Article  Google Scholar 

  • Xu Y, Sun X, Jin J, Zhou H (2010) Protective effect of nitric oxide on light-induced oxidative damage in leaves of tall fescue. J Plant Physiol 167:512–518

    Article  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Methylglyoxal detoxification by glyoxalase system: a survival strategy during environmental stresses. Physiol Mol Biol Plants 11:1–11

    CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Sopory SK (2008) An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabol Drug Interact 23:51–68

    Article  CAS  Google Scholar 

  • Yu YG, Weiss RL (1992) Arginine transport in mitochondria of Neurospora crassa. J Biol Chem 267:15491–15495

    CAS  PubMed  Google Scholar 

  • Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  Google Scholar 

  • Zeid IM (2009) Effect of arginine and urea on polyamines content and growth of bean under salinity stress. Acta Physiol Plant 31:65–70

    Article  CAS  Google Scholar 

  • Zhang XL, Jia XF, Yu B, Gao Y, Bai JG (2011) Exogenous hydrogen peroxide influences antioxidant enzyme activity and lipid peroxidation in cucumber leaves at low light. Sci Hortic 129:656–662

    Article  CAS  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227

    Article  CAS  Google Scholar 

  • Zivcak M, Repková J, Olšovská K, Brestič M (2009) Osmotic adjustment in winter wheat varieties and its importance as a mechanism of drought tolerance. Cereal Res Commun 37:569–572

    Google Scholar 

  • Zivcak M, Brestic M, Sytar O (2016) Osmotic adjustment and plant adaptation to drought stress. In: Hossain MA, Wani S, Bhattacharjee S, Burritt D, Tran LS (eds) Drought stress tolerance in plants, vol 1. Springer, Cham, pp 105–143

    Chapter  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Japan Society for the Promotion of Science (JSPS), Japan for financial support. We acknowledge Taufika Islam Anee, Mazhar Ul Alam and Farah Tasmin, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Japan for the critical reading and formatting of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.H., M.F. and H.O. conceived and designed the experiments; M.H., K.N. and A.R. performed the experiments; M.H. and M.I. analyzed the data; M.F., M.I. and H.O. contributed reagents/materials/analysis tools; K.N. and M.H. wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Masayuki Fujita.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanuzzaman, M., Nahar, K., Rahman, A. et al. Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiol Mol Biol Plants 24, 993–1004 (2018). https://doi.org/10.1007/s12298-018-0531-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0531-6

Keywords

Navigation