Skip to main content

Advertisement

Log in

DuCLOX-2/5 inhibition: a promising target for cancer chemoprevention

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Cancer is a leading cause of death and major health concern worldwide. The animal and human studies support the presumption that inflammation directs the cancer initiation and progression. Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) are the key players in the inflammatory cascade contributing towards the angiogenesis, tumor cell invasiveness, and disruption in the pathways of cellular proliferation/apoptosis. Contemporary studies have particularized a promising role of COX-2 and 5-LOX inhibitors in cancer chemoprevention. The present review is a pursuit to define implications of dual COX-2 and 5-LOX (DuCLOX-2/5) inhibition on various aspects of cancer augmentation and chemoprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

AA:

Arachidonic acid

Bcl-2:

B cell chronic lymphocytic leukaemia-2

COX:

Cyclooxygenase

ERK:

Extracellular signal regulated kinase

GDP:

Guanosine diphosphate

GTP:

Guanosine triphosphate

HETE:

Hydroeicosa-tetraenoic acid

HPETE:

Hydroperoxyeicosa-tetraenoic acid

LXs:

Lipoxins

LOX:

Lipoxygenase

LTs:

Leukotrienes

MAPK:

Mitogen activated protein kinase

NSAIDs:

Non-steroidal anti-inflammatory drugs

NF-Kb:

Nuclear factor-kappa B

PPAR:

Peroxisome proliferator activated receptor

PI3K/AKT:

Phosphoinositide-3 kinase/AKT

PLA2 :

Phospholipase A2

PIP2 :

Phosphatidylinositol 4, 5-bisphosphate

PIP3 :

Phosphatidylinositol-3,4,5-triphosphate

PUFA:

Polyunsaturated fatty acids

PKC:

Protein kinase C

PGI2 :

Prostacyclin

PGs:

Prostaglandins

RTKs:

Receptor tyrosine kinase

RXR:

Retinoid X receptor

TXs:

Thromboxane

VEGF:

Vascular endothelial growth factor

5-HETE:

5-Hydroxytetraenoic acid

FLAP:

5-LOX activating protein

References

  1. Greene ER, Huang S, Serhan CN, Panigrahy D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat. 2011;96(1):27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hammamieh R, Sumaida D, Zhang X, Das R, Jett M. Control of the growth of human breast cancer cells in culture by manipulation of arachidonate metabolism. BMC Cancer. 2007;7(1):138.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jänne PA, Mayer RJ. Chemoprevention of colorectal cancer. N Engl J Med. 2000;342(26):1960–8.

    Article  PubMed  Google Scholar 

  4. Dubois R. Review article: cyclooxygenase—a target for colon cancer prevention. Aliment Pharmacol Ther. 2000;14(s1):64–7.

    Article  CAS  PubMed  Google Scholar 

  5. Astorg P. Dietary n-6 and n-3 polyunsaturated fatty acids and prostate cancer risk: a review of epidemiological and experimental evidence. Cancer Causes Control. 2004;15(4):367–86.

    Article  PubMed  Google Scholar 

  6. Kawai N, Tsujii M, Tsuji S. Cyclooxygenases and colon cancer. Prostaglandins Other Lipid Mediat. 2002;68:187–96.

    Article  PubMed  Google Scholar 

  7. Ghosh J, Myers CE. Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun. 1997;235(2):418–23.

    Article  CAS  PubMed  Google Scholar 

  8. Harris RE, Casto BC, Harris ZM. Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol. 2014;5(4):677–92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harris R. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology. 2009;17(2):55–67.

    Article  CAS  PubMed  Google Scholar 

  10. Dempke W, Rie C, Grothey A, Schmoll H-J. Cyclooxygenase-2: a novel target for cancer chemotherapy? J Cancer Res Clin Oncol. 2001;127(7):411–7.

    Article  CAS  PubMed  Google Scholar 

  11. Ristimäki A, Sivula A, Lundin J, Lundin M, Salminen T, Haglund C, et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 2002;62(3):632–5.

    PubMed  Google Scholar 

  12. Sinicrope FA, Gill S. Role of cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev. 2004;23(1–2):63–75.

    Article  CAS  PubMed  Google Scholar 

  13. Lyons TR, Borges VF, Betts CB, Guo Q, Kapoor P, Martinson HA, et al. Cyclooxygenase-2–dependent lymphangiogenesis promotes nodal metastasis of postpartum breast cancer. J Clin Investig. 2014;124(9):3901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM. Cyclooxygenases in cancer: progress and perspective. Cancer Lett. 2004;215(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  15. Liu CH, Chang S-H, Narko K, Trifan OC, Wu M-T, Smith E, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem. 2001;276(21):18563–9.

    Article  CAS  PubMed  Google Scholar 

  16. Qu T, Uz T, Manev H. Inflammatory 5-LOX mRNA and protein are increased in brain of aging rats. Neurobiol Aging. 2000;21(5):647–52.

    Article  CAS  PubMed  Google Scholar 

  17. Hatzelmann A, Fruchtmann R, Mohrs K, Raddatz S, Matzke M, Pleiss U, et al. Mode of action of the leukotriene synthesis (FLAP) inhibitor BAY X 1005: implications for biological regulation of 5-lipoxygenase. Agents Actions. 1994;43(1–2):64–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ye Y, Wu W, Shin V, Bruce I, Wong B, Cho C. Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis. 2005;26(4):827–34.

    Article  CAS  PubMed  Google Scholar 

  19. Nie D, Lamberti M, Zacharek A, Li L, Szekeres K, Tang K, et al. Thromboxane A 2 regulation of endothelial cell migration, angiogenesis, and tumor metastasis. Biochem Biophys Res Commun. 2000;267(1):245–51.

    Article  CAS  PubMed  Google Scholar 

  20. Nie D, Che M, Grignon D, Tang K, Honn KV. Role of eicosanoids in prostate cancer progression. Cancer Metastasis Rev. 2001;20(3–4):195–206.

    Article  CAS  PubMed  Google Scholar 

  21. Altavilla D, Minutoli L, Polito F, Irrera N, Arena S, Magno C, et al. Effects of flavocoxid, a dual inhibitor of COX and 5-lipoxygenase enzymes, on benign prostatic hyperplasia. Br J Pharmacol. 2012;167(1):95–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tavolari S, Bonafè M, Marini M, Ferreri C, Bartolini G, Brighenti E, et al. Licofelone, a dual COX/5-LOX inhibitor, induces apoptosis in HCA-7 colon cancer cells through the mitochondrial pathway independently from its ability to affect the arachidonic acid cascade. Carcinogenesis. 2008;29(2):371–80.

    Article  CAS  PubMed  Google Scholar 

  23. Ding X, Zhu C, Qiang H, Zhou X, Zhou G. Enhancing antitumor effects in pancreatic cancer cells by combined use of COX-2 and 5-LOX inhibitors. Biomed Pharmacother. 2011;65(7):486–90.

    Article  CAS  PubMed  Google Scholar 

  24. Schneider C, Pozzi A. Cyclooxygenases and lipoxygenases in cancer. Cancer Metastasis Rev. 2011;30(3–4):277–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoque A, Lippman SM, Wu T-T, Xu Y, Liang ZD, Swisher S, et al. Increased 5-lipoxygenase expression and induction of apoptosis by its inhibitors in esophageal cancer: a potential target for prevention. Carcinogenesis. 2005;26(4):785–91.

    Article  CAS  PubMed  Google Scholar 

  26. Needleman P, Jakschik B, Morrison A, Lefkowith J. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55(1):69–102.

    Article  CAS  PubMed  Google Scholar 

  27. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr. 2004;79(6):935–45.

    CAS  PubMed  Google Scholar 

  28. Holtzman MJ. Arachidonic acid metabolism. Am Rev Respir Dis. 1991;143:188–203.

    Article  CAS  PubMed  Google Scholar 

  29. Shiota G, Okubo M, Noumi T, Noguchi N, Oyama K, Takano Y, et al. Cyclooxygenase-2 expression in hepatocellular carcinoma. Hepatogastroenterology. 1998;46(25):407–12.

    Google Scholar 

  30. Saukkonen K, Buskens CJ, Sivula A, van Rees BP, Erkinheimo T-L, Rintahaka J, et al. COX-2 in cancer. In: COX-2 Inhibitors. Berlin: Springer; 2004. p. 227–43.

  31. Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, et al. Expression of cyclooxygenase-1 and-2 in human colorectal cancer. Cancer Res. 1995;55(17):3785–9.

    CAS  PubMed  Google Scholar 

  32. Hatazawa R, Tanigami M, Izumi N, Kamei K, Tanaka A, Takeuchi K. Prostaglandin E2 stimulates VEGF expression in primary rat gastric fibroblasts through EP4 receptors. Inflammopharmacology. 2007;15(5):214–7.

    Article  CAS  PubMed  Google Scholar 

  33. Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN. Host cyclooxygenase-2 modulates carcinoma growth. J Clin Investig. 2000;105(11):1589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281(5381):1309.

    Article  CAS  PubMed  Google Scholar 

  35. Bossy-Wetzel E, Green DR. Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem. 1999;274(25):17484–90.

    Article  CAS  PubMed  Google Scholar 

  36. Danial NN. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res. 2007;13(24):7254–63.

    Article  CAS  PubMed  Google Scholar 

  37. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13(15):1899–911.

    Article  CAS  PubMed  Google Scholar 

  38. Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(2):a008722.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ly JD, Grubb D, Lawen A. The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis. 2003;8(2):115–28.

    Article  CAS  PubMed  Google Scholar 

  41. Hunter AM, LaCasse EC, Korneluk RG. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis. 2007;12(9):1543–68.

    Article  CAS  PubMed  Google Scholar 

  42. McGinty A, Chang Y-WE, Sorokin A, Bokemeyer D, Dunn MJ. Cyclooxygenase-2 expression inhibits trophic withdrawal apoptosis in nerve growth factor-differentiated PC12 cells. J Biol Chem. 2000;275(16):12095–101.

    Article  CAS  PubMed  Google Scholar 

  43. Li Z, Lang J, Leng J, Liu D. Increased levels of prostaglandin E2 and bcl-2 in peritoneal fluid and serum of patients with endometriosis. Zhonghua fu chan ke za zhi. 2005;40(9):598–600.

    PubMed  Google Scholar 

  44. Wang D, DuBois RN. Cyclooxygenase 2-derived prostaglandin E2 regulates the angiogenic switch. Proc Natl Acad Sci USA. 2004;101(2):415–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 1998;58(2):362–6.

    CAS  PubMed  Google Scholar 

  46. Wu KK, Liou J-Y. Cyclooxygenase inhibitors induce colon cancer cell apoptosis via PPARδ → 14-3-3ε pathway. Methods Mol Biol. 2009;512:295–307.

    Article  CAS  PubMed  Google Scholar 

  47. Michalik L, Desvergne B, Wahli W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer. 2004;4(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  48. Inoue K, Kawahito Y, Tsubouchi Y, Yamada R, Kohno M, Hosokawa Y, et al. Expression of peroxisome proliferator-activated receptor (PPAR)-gamma in human lung cancer. Anticancer Res. 2000;21(4A):2471–6.

    Google Scholar 

  49. Avis I, Martínez A, Tauler J, Zudaire E, Mayburd A, Abu-Ghazaleh R, et al. Inhibitors of the arachidonic acid pathway and peroxisome proliferator-activated receptor ligands have superadditive effects on lung cancer growth inhibition. Cancer Res. 2005;65(10):4181–90.

    Article  CAS  PubMed  Google Scholar 

  50. Panigraphy D, Huang S, Kieran MW, Kaipainen A. PPARγ as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol Ther. 2005;4(7):687–93.

    Article  Google Scholar 

  51. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;93(5):705–16.

    Article  CAS  PubMed  Google Scholar 

  52. Basu GD, Pathangey LB, Tinder TL, LaGioia M, Gendler SJ, Mukherjee P. Cyclooxygenase-2 Inhibitor Induces Apoptosis in Breast Cancer Cells in an In vivo Model of Spontaneous Metastatic Breast Cancer11Susan G. Komen Breast Cancer Foundation. Note: GD Basu and LB Pathangey contributed equally to this work. Mol Cancer Res. 2004;2(11):632–42.

    CAS  PubMed  Google Scholar 

  53. Chang S-H, Liu CH, Conway R, Han DK, Nithipatikom K, Trifan OC, et al. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA. 2004;101(2):591–6.

    Article  CAS  PubMed  Google Scholar 

  54. Karavitis J, Hix LM, Shi YH, Schultz RF, Khazaie K, Zhang M. Regulation of COX2 expression in mouse mammary tumor cells controls bone metastasis and PGE2-induction of regulatory T cell migration. PLoS One. 2012;7(9):e46342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuwano T, Nakao S, Yamamoto H, Tsuneyoshi M, Yamamoto T, Kuwano M, et al. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 2004;18(2):300–10.

    Article  CAS  PubMed  Google Scholar 

  56. Michel F, Silvestre J-S, Waeckel L, Corda S, Verbeuren T, Vilaine JP, et al. Thromboxane A2/Prostaglandin H2 Receptor Activation Mediates Angiotensin II–Induced Postischemic Neovascularization. Arterioscler Thromb Vasc Biol. 2006;26(3):488–93.

    Article  CAS  PubMed  Google Scholar 

  57. Romano M, Catalano A, Nutini M, D’urbano E, Crescenzi C, Claria J, et al. 5-Lipoxygenase regulates malignant mesothelial cell survival: involvement of vascular endothelial growth factor. FASEB J. 2001;15(13):2326–36.

    Article  CAS  PubMed  Google Scholar 

  58. Brown N, Slater D, Alvi S, Elder M, Sullivan M, Bennett P. Expression of 5-lipoxygenase and 5-lipoxygenase-activating protein in human fetal membranes throughout pregnancy and at term. Mol Hum Reprod. 1999;5(7):668–74.

    Article  CAS  PubMed  Google Scholar 

  59. Pouliot M, Mcdonald PP, Krump E, Mancini JA, Mccoll SR, Weech PK, et al. Colocalization of Cytosolic Phospholipase A2, 5-Lipoxygenase, and 5-Lipoxygenase-Activating Protein at the Nuclear Membrane of A23187-Stimulated Human Neutrophils. Eur J Biochem. 1996;238(1):250–8.

    Article  CAS  PubMed  Google Scholar 

  60. Pidgeon GP, Lysaght J, Krishnamoorthy S, Reynolds JV, O’Byrne K, Nie D, et al. Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev. 2007;26(3–4):503–24.

    Article  CAS  PubMed  Google Scholar 

  61. Ihara A, Wada K, Yoneda M, Fujisawa N, Takahashi H, Nakajima A. Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J Pharmacol Sci. 2007;103(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  62. Tong W-G, Ding X-Z, Adrian TE. The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem Biophys Res Commun. 2002;296(4):942–8.

    Article  CAS  PubMed  Google Scholar 

  63. Wong BCY, Wang WP, Cho CH, Fan XM, Lin MCM, Kung HF, et al. 12-Lipoxygenase inhibition induced apoptosis in human gastric cancer cells. Carcinogenesis. 2001;22(9):1349–54.

    Article  CAS  PubMed  Google Scholar 

  64. Wallace JM. Nutritional and botanical modulation of the inflammatory cascade—eicosanoids, cyclooxygenases, and lipoxygenases—as an adjunct in cancer therapy. Integr Cancer Ther. 2002;1(1):7–37.

    CAS  PubMed  Google Scholar 

  65. Paruchuri S, Hallberg B, Juhas M, Larsson C, Sjölander A. Leukotriene D4 activates MAPK through a Ras-independent but PKCϵ-dependent pathway in intestinal epithelial cells. J Cell Sci. 2002;115(9):1883–93.

    CAS  PubMed  Google Scholar 

  66. Lee SH, Hu L-L, Gonzalez-Navajas J, Seo GS, Shen C, Brick J, et al. ERK activation drives intestinal tumorigenesis in Apcmin/+ mice. Nat Med. 2010;16(6):665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mahshid Y. Biosynthesis and biological role of leukotrienes in B lymphocytes: Institutionen för medicinsk biokemi och biofysik (MBB)/Department of Medical Biochemistry and Biophysics; 2006.

  68. Romano M, Clària J. Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. FASEB J. 2003;17(14):1986–95.

    Article  CAS  PubMed  Google Scholar 

  69. Nieves D, Moreno JJ. Role of 5-lipoxygenase pathway in the regulation of RAW 264.7 macrophage proliferation. Biochem Pharmacol. 2006;72(8):1022–30.

    Article  CAS  PubMed  Google Scholar 

  70. Wada K, Arita M, Nakajima A, Katayama K, Kudo C, Kamisaki Y, et al. Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. FASEB J. 2006;20(11):1785–92.

    Article  CAS  PubMed  Google Scholar 

  71. Zhou G, Ding X, Huang J, Zhang H, Wu S. Suppression of 5-lipoxygenase gene is involved in triptolide-induced apoptosis in pancreatic tumor cell lines. Biochimica et Biophysica Acta (BBA) Gener Subj 2007;1770(7):1021–7.

  72. Wallace JL, McKnight W, Reuter BK, Vergnolle N. NSAID-induced gastric damage in rats: requirement for inhibition of both cyclooxygenase 1 and 2. Gastroenterology. 2000;119(3):706–14.

    Article  CAS  PubMed  Google Scholar 

  73. Brophy JM. Cardiovascular effects of cyclooxygenase-2 inhibitors. Curr Opin Gastroenterol. 2007;23(6):617–24.

    CAS  PubMed  Google Scholar 

  74. Zhang R, Brown S, Guerrier K, Kassa A, Zhou Y, Gu X, et al. Cytotoxicity of lipoxygenase inhibitors towards prostate cancer cells in culture. Cancer Res. 2005;65(9 Supplement):1380.

  75. Goossens L, Pommery N. Pierre Henichart J. COX-2/5-LOX dual acting anti-inflammatory drugs in cancer chemotherapy. Curr Top Med Chem. 2007;7(3):283–96.

    Article  CAS  PubMed  Google Scholar 

  76. Claria J, Romano M. Pharmacological intervention of cyclooxygenase-2 and 5-lipoxygenase pathways. Impact on inflammation and cancer. Curr Pharm Des. 2005;11(26):3431–47.

    Article  CAS  PubMed  Google Scholar 

  77. Cianchi F, Cortesini C, Magnelli L, Fanti E, Papucci L, Schiavone N, et al. Inhibition of 5-lipoxygenase by MK886 augments the antitumor activity of celecoxib in human colon cancer cells. Mol Cancer Ther. 2006;5(11):2716–26.

    Article  CAS  PubMed  Google Scholar 

  78. Howe LR, Subbaramaiah K, Patel J, Masferrer JL, Deora A, Hudis C, et al. Celecoxib, a selective cyclooxygenase 2 inhibitor, protects against human epidermal growth factor receptor 2 (HER-2)/neu-induced breast cancer. Cancer Res. 2002;62(19):5405–7.

    CAS  PubMed  Google Scholar 

  79. Tamura M, Deb S, Sebastian S, Okamura K, Bulun SE. Estrogen up-regulates cyclooxygenase-2 via estrogen receptor in human uterine microvascular endothelial cells. Fertil Steril. 2004;81(5):1351–6.

    Article  CAS  PubMed  Google Scholar 

  80. Ferrandina G, Ranelletti FO, Gallotta V, Martinelli E, Zannoni GF, Gessi M, et al. Expression of cyclooxygenase-2 (COX-2), receptors for estrogen (ER), and progesterone (PR), p53, ki67, and neu protein in endometrial cancer. Gynecol Oncol. 2005;98(3):383–9.

    Article  CAS  PubMed  Google Scholar 

  81. Simeone A-M, Li Y-J, Broemeling LD, Johnson MM, Tuna M, Tari AM. Cyclooxygenase-2 is essential for HER2/neu to suppress N-(4-hydroxyphenyl) retinamide apoptotic effects in breast cancer cells. Cancer Res. 2004;64(4):1224–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank University Grants Commission, Government of India, for providing JRF (RGNF) to SG. SR is working as a JRF on a research grant funded by Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Kaithwas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Funding source

None.

Financial disclosure

None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, S., Roy, S., Ansari, M.N. et al. DuCLOX-2/5 inhibition: a promising target for cancer chemoprevention. Breast Cancer 24, 180–190 (2017). https://doi.org/10.1007/s12282-016-0723-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-016-0723-2

Keywords

Navigation