Skip to main content

Advertisement

Log in

Patients with Primary Immunodeficiencies: How Are They at Risk for Fungal Disease?

  • Current Management of Fungal Infections (J Maertens, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we focus on the inborn errors of immunity known to render the host susceptible to fungal infections, including candidias, aspergillosis, dermatophytosis, phaeohyphomycosis, pneumocystosis, fusariosis, cryptococcosis, and endemic mycoses.

Recent Findings

Classically, the burden of fungal disease in humans is believed to be carried by patients with a secondary immunodeficiency, either due to malignancy, to chemotherapy, to an immunocompromised state post hematopoietic stem cell transplantation, or to treatment with anti-cytokine therapies. However, in the last decade, the study of patients affected by fungal infections without any overt risk factors has led to the unraveling of several monogenic defects of human immunity to fungi. The study of these inborn errors of immunity has added vastly to our comprehension of antifungal immunity. For example, the role of IL-17 immunity in human defense against mucocutaneous candidiasis has been extensively characterized through the analysis of IL-17F, IL-17RA, IL-17Rc, ACT1, RORγT and, indirectly, CARD9 deficiency.

Summary

Many monogenic causes of susceptibility to superficial and/or invasive fungal infections have been recently unraveled. Most of these inborn errors of immunity associate with a specific type of fungal infection, and such a defect should always be suspected and sought in patients affected by fungal infection in the absence of predisposing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chastain DB, Henao-Martínez AF, Franco-Paredes C. Opportunistic invasive mycoses in AIDS: cryptococcosis, histoplasmosis, coccidiodomycosis, and talaromycosis. Curr Infect Dis Rep. 2017;19(10):36.

    PubMed  Google Scholar 

  2. Kullberg BJ, Arendrup MC. Invasive candidiasis. N Engl J Med. 2015;373(15):1445–56.

    CAS  PubMed  Google Scholar 

  3. Pana ZD, Roilides E, Warris A, Groll AH, Zaoutis T. Epidemiology of invasive fungal disease in children. J Pediatric Infect Dis Soc. 2017;6(suppl_1):S3–11.

    PubMed  PubMed Central  Google Scholar 

  4. •• Li J, Vinh DC, Casanova J-L, Puel A. Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Curr Opin Microbiol. 2017;40:46–57 Comprehensive review of the disorders of Il-17 immunity and CARD9 deficiency underlying fungal infections.

    CAS  PubMed  Google Scholar 

  5. Lanternier F, Cypowyj S, Picard C, Bustamante J, Lortholary O, Casanova J-L, et al. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr. 2013;25(6):736–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vinh DC. Insights into human antifungal immunity from primary immunodeficiencies. Lancet Infect Dis. 2011;11(10):780–92.

    CAS  PubMed  Google Scholar 

  7. • Limon JJ, Skalski JH, Underhill DM. Commensal fungi in health and disease. Cell Host Microbe. 2017;22(2):156–65 Review of the commensal human mycobiota.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brandt ME, Lockhart SR. Recent taxonomic developments with candida and other opportunistic yeasts. Curr Fungal Infect Rep. 2012;6(3):170–7.

    PubMed  PubMed Central  Google Scholar 

  9. • Fischer A, Notarangelo LD, Neven B, Cavazzana M, Puck JM. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers. 2015;1:15061 Comprehensive review of the different genetic and phenotypic characteristics of SCID and CID.

    PubMed  Google Scholar 

  10. Dvorak CC, Cowan MJ, Logan BR, Notarangelo LD, Griffith LM, Puck JM, et al. The natural history of children with severe combined immunodeficiency: baseline features of the first fifty patients of the primary immune deficiency treatment consortium prospective study 6901. J Clin Immunol. 2013;33(7):1156–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Picard C, Casanova J-L, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin Microbiol Rev. 2011;24(3):490–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schimke LF, Rieber N, Rylaarsdam S, Cabral-Marques O, Hubbard N, Puel A, et al. A novel gain-of-function IKBA mutation underlies ectodermal dysplasia with immunodeficiency and polyendocrinopathy. J Clin Immunol. 2013;33(6):1088–99.

    CAS  PubMed  Google Scholar 

  13. Hanson EP, Monaco-Shawver L, Solt LA, Madge LA, Banerjee PP, May MJ, et al. Hypomorphic nuclear factor-κB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol. 2008;122(6):1169–1177.e16.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Aydin SE, Kilic SS, Aytekin C, Kumar A, Porras O, Kainulainen L, et al. DOCK8 deficiency: clinical and immunological phenotype and treatment options - a review of 136 patients. J Clin Immunol. 2015;35(2):189–98.

    CAS  PubMed  Google Scholar 

  15. Chu EY, Freeman AF, Jing H, Cowen EW, Davis J, Su HC, et al. Cutaneous manifestations of DOCK8 deficiency syndrome. Arch Dermatol. 2012;148(1):79–84.

    CAS  PubMed  Google Scholar 

  16. Engelhardt KR, Gertz ME, Keles S, Schäffer AA, Sigmund EC, Glocker C, et al. The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol. 2015;136(2):402–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123(6):809–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. •• Okada S, Puel A, Casanova J-L, Kobayashi M. Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity. Clin Transl Immunology. 2016;5(12):e114 Comprehensive review of the defects of IL-17 immunity underlying CMC.

    PubMed  PubMed Central  Google Scholar 

  19. Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332(6025):65–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Boisson B, Wang C, Pedergnana V, Wu L, Cypowyj S, Rybojad M, et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity. 2013;39(4):676–86.

    CAS  PubMed  Google Scholar 

  21. Ling Y, Cypowyj S, Aytekin C, Galicchio M, Camcioglu Y, Nepesov S, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med. 2015;212(5):619–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bader O, Weig MS, Gross U, Schön MP, Mempel M, Buhl T. A 32-year-old man with ulcerative mucositis, skin lesions, and nail dystrophy. Clin Infect Dis. 2012;54(7):1035–6.

    Google Scholar 

  23. •• Lévy R, Okada S, Béziat V, Moriya K, Liu C, Chai LYA, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci. 2016;113(51):E8277–85 Summary of the phenotype of patients with IL-17RA deficiency.

    PubMed  Google Scholar 

  24. Fellmann F, Angelini F, Wassenberg J, Perreau M, Ramirez NA, Simon G, et al. IL-17 receptor A and adenosine deaminase 2 deficiency in siblings with recurrent infections and chronic inflammation. J Allergy Clin Immunol. 2016;137(4):1189–1196.e2.

    CAS  PubMed  Google Scholar 

  25. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 2007;357(16):1608–19.

    CAS  PubMed  Google Scholar 

  26. Sowerwine KJ, Holland SM, Freeman AF. Hyper-IgE syndrome update. Ann N Y Acad Sci. 2012;1250(1):25–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med. 2011;365(2):127–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Glocker E-O, Hennigs A, Nabavi M, Schäffer AA, Woellner C, Salzer U, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361(18):1727–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, et al. Impairment of immunity to candida and mycobacterium in humans with bi-allelic RORC mutations. Science. 2015;349(6248):606–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. •• Liu L, Okada S, Kong X-F, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48 Characterization of the molecular defect of IL-17 immunity in STAT1 GOF mutations.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LAB, Gilissen C, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365(1):54–61.

    PubMed  Google Scholar 

  32. Puel A, Döffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207(2):291–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. •• Toubiana J, Okada S, Hiller J, Oleastro M, Gomez ML, Becerra JCA, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127(25):3154–64 Review of the clinical presentation of patients with STAT1 GOF.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chandesris M-O, Melki I, Natividad A, Puel A, Fieschi C, Yun L, et al. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: molecular, cellular, and clinical features from a French national survey. Medicine (Baltimore). 2012;91(4):e1–e19.

    CAS  PubMed Central  Google Scholar 

  35. de Beaucoudrey L, Samarina A, Bustamante J, Cobat A, Boisson-Dupuis S, Feinberg J, et al. Revisiting human IL-12Rβ1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore). 2010;89(6):381–402.

    Google Scholar 

  36. Prando C, Samarina A, Bustamante J, Boisson-Dupuis S, Cobat A, Picard C, et al. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 Kindreds. Medicine (Baltimore). 2013;92(2):109–22.

    CAS  Google Scholar 

  37. Ouederni M, Sanal O, Ikincioğullari A, Tezcan I, Dogu F, Sologuren I, et al. Clinical features of candidiasis in patients with inherited interleukin 12 receptor β1 deficiency. Clin Infect Dis. 2014;58(2):204–13.

    CAS  PubMed  Google Scholar 

  38. Lanternier F, Mahdaviani SA, Barbati E, Chaussade H, Koumar Y, Levy R, et al. Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species–induced meningoencephalitis, colitis, or both. J Allergy Clin Immunol. 2015;135(6):1558–1568.e2.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Grumach AS, de Queiroz-Telles F, Migaud M, Lanternier F, Filho NR, Palma SMU, et al. A homozygous CARD9 mutation in a Brazilian patient with deep dermatophytosis. J Clin Immunol. 2015;35(5):486–90.

    CAS  PubMed  Google Scholar 

  40. Corvilain E, Casanova JL, Puel A. Inherited CARD9 deficiency: Invasive disease caused by ascomycete fungi in previously healthy children and adults. J Clin Immunol 2018 https://doi.org/10.1007/s10875-018-0539-2.

  41. •• Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S, Prando C, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369(18):1704–14 Landmark paper on CARD9 deficiency.

  42. Donadieu J, Fenneteau O, Beaupain B, Mahlaoui N, Chantelot CB. Congenital neutropenia: diagnosis, molecular bases and patient management. Orphanet J Rare Dis. 2011;6:26.

    PubMed  PubMed Central  Google Scholar 

  43. Hanna S, Etzioni A. Leukocyte adhesion deficiencies. Ann N Y Acad Sci. 2012;1250(1):50–5.

    CAS  PubMed  Google Scholar 

  44. Winkelstein JA, Marino MC, Johnston RB, Boyle J, Curnutte J, Gallin JI, et al. Chronic granulomatous disease: report on a national registry of 368 patients. Medicine (Baltimore). 2000;79(3):155–69.

    CAS  Google Scholar 

  45. van den Berg JM, van Koppen E, Åhlin A, Belohradsky BH, Bernatowska E, Corbeel L, et al. Chronic granulomatous disease: the European experience. PLoS One. 2009;4(4):e5234.

    PubMed  PubMed Central  Google Scholar 

  46. Beauté J, Obenga G, Le Mignot L, Mahlaoui N, Bougnoux M-E, Mouy R, et al. Epidemiology and outcome of invasive fungal diseases in patients with chronic granulomatous disease: a multicenter study in France. Pediatr Infect Dis J. 2011;30(1):57–62.

    PubMed  Google Scholar 

  47. Drewniak A, Gazendam RP, Tool ATJ, van Houdt M, Jansen MH, van Hamme JL, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121(13):2385–92.

    CAS  PubMed  Google Scholar 

  48. Herbst M, Gazendam R, Reimnitz D, Sawalle-Belohradsky J, Groll A, Schlegel P-G, et al. Chronic Candida albicans meningitis in a 4-year-old girl with a homozygous mutation in the CARD9 gene (Q295X). Pediatr Infect Dis J. 2015;34(9):999–1002.

    PubMed  Google Scholar 

  49. • Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis. Thorax. 2015;70(3):270–7 Comprehensive review of the clinical presentations of pulmonary aspergillosis.

    PubMed  Google Scholar 

  50. Vinh DC, Sugui JA, Hsu AP, Freeman AF, Holland SM. Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125(6):1389–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Freeman AF, Olivier KN. Hyper IgE syndromes and the lung. Clin Chest Med. 2016;37(3):557–67.

    PubMed  PubMed Central  Google Scholar 

  52. Segal BH, DeCarlo ES, Kwon-Chung KJ, Malech HL, Gallin JI, Holland SM. Aspergillus nidulans infection in chronic granulomatous disease. Medicine (Baltimore). 1998;77(5):345–54.

    CAS  Google Scholar 

  53. Siddiqui S, Anderson VL, Hilligoss DM, Abinun M, Kuijpers TW, Masur H, et al. Fulminant mulch pneumonitis: an emergency presentation of chronic granulomatous disease. Clin Infect Dis. 2007;45(6):673–81.

    CAS  PubMed  Google Scholar 

  54. Rieber N, Gazendam RP, Freeman AF, Hsu AP, Collar AL, Sugui JA, et al. Extrapulmonary aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1(17):e89890.

    PubMed  PubMed Central  Google Scholar 

  55. Cheikhrouhou F, Makni F, Ayadi A. La maladie dermatophytique: revue de la littérature. J Mycol Médicale. 2010;20(1):61–9.

    Google Scholar 

  56. Jachiet M, Lanternier F, Rybojad M, Bagot M, Ibrahim L, Casanova J-L, et al. Posaconazole treatment of extensive skin and nail dermatophytosis due to autosomal recessive deficiency of CARD9. JAMA Dermatol. 2015;151(2):192–4.

    PubMed  Google Scholar 

  57. Boudghene Stambouli O, Amrani N, Boudghéne Stambouli K, Bouali F. Dermatophytic disease with deficit in CARD9: a new case with a brain impairment. J Mycol Médicale. 2017;27(2):250–3.

    CAS  Google Scholar 

  58. Yan XX, Yu CP, Fu XA, Bao FF, Du DH, Wang C, et al. CARD9 mutation linked to Corynespora cassiicola infection in a Chinese patient. Br J Dermatol. 2015;174(1):176–9.

    PubMed  Google Scholar 

  59. Wang X, Wang W, Lin Z, Wang X, Li T, Yu J, et al. CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J Allergy Clin Immunol. 2014;133(3):905–908.e3.

    CAS  PubMed  Google Scholar 

  60. Lanternier F, Barbati E, Meinzer U, Liu L, Pedergnana V, Migaud M, et al. Inherited CARD9 deficiency in 2 unrelated patients with invasive Exophiala infection. J Infect Dis. 2015;211(8):1241–50.

    CAS  PubMed  Google Scholar 

  61. Wang X, Zhang R, Wu W, Song Y, Wan Z, Han W, et al. Impaired specific antifungal immunity in CARD9-deficient patients with phaeohyphomycosis. J Investig Dermatol. 2018;138(3):607–17.

    CAS  PubMed  Google Scholar 

  62. Leven EA, Maffucci P, Ochs HD, Scholl PR, Buckley RH, Fuleihan RL, et al. Hyper IgM syndrome: a report from the USIDNET registry. J Clin Immunol. 2016;36(5):490–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Winkelstein JA, Marino MC, Ochs H, Fuleihan R, Scholl PR, Geha R, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore). 2003;82(6):373–84.

    CAS  Google Scholar 

  64. Su HC, Jing H, Zhang Q. DOCK8 deficiency. Ann N Y Acad Sci. 2012;1246(1):26–33.

    Google Scholar 

  65. Hanna S, Etzioni A. MHC class I and II deficiencies. J Allergy Clin Immunol. 2014;134(2):269–75.

    CAS  PubMed  Google Scholar 

  66. Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr. 1994;125(6, Part 1):876–85.

    CAS  PubMed  Google Scholar 

  67. Dokal I. Dyskeratosis congenita. In: Sullivan KE, Stiehm ER, editors. Stiehm’s immune deficiencies. Cambridge: Academic; 2014.

    Google Scholar 

  68. Ming EJ, Graham JMJ. Genetic syndromes with evidence of immune deficiency. In: Sullivan KE, Stiehm ER, editors. Stiehm’s immune deficiencies. Cambridge: Academic; 2014.

    Google Scholar 

  69. Ziegler JB, Kashef S. Well-known combined immune deficiency syndromes. In: Sullivan KE, Stiehm ER, editors. Stiehm’s immune deficiencies. Cambridge: Academic; 2014.

    Google Scholar 

  70. Su HC, Lenardo MJ. Combined immune deficiencies. In: Sullivan KE, Stiehm ER, editors. Stiehm’s immune deficiencies. Cambridge: Academic; 2014.

    Google Scholar 

  71. Sirianni MC, Atzori C, De Santis W, Milito C, Esposito A, Marziali M, et al. A case of Pneumocystis jiroveci pneumonia in X-linked agammaglobulinaemia treated with immunosuppressive therapy: a lesson for immunologists. Int Arch Allergy Immunol. 2006;140(1):82–8.

    PubMed  Google Scholar 

  72. Walzer PD, Schultz MG, Western KA, Robbins JB. Pneumocystis carinii pneumonia and primary immune deficiency diseases of infancy and childhood. J Pediatr. 1973;82(3):416–22.

    CAS  PubMed  Google Scholar 

  73. Lee PP, Lau Y-L. Cellular and molecular defects underlying invasive fungal infections—revelations from endemic mycoses. Front Immunol. 2017;8:735.

    PubMed  PubMed Central  Google Scholar 

  74. Odio CD, Marciano BE, Galgiani JN, Holland SM. Risk Factors for disseminated coccidioidomycosis, United States. Emerg Infect Dis. 2017;23(2).

  75. Vinh DC, Masannat F, Dzioba RB, Galgiani JN, Holland SM. Refractory disseminated coccidioidomycosis and mycobacteriosis in interferon-γ receptor 1 deficiency. Clin Infect Dis. 2009;49(6):e62–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vinh DC, Schwartz B, Hsu AP, Miranda DJ, Valdez PA, Fink D, et al. Interleukin-12 receptor β1 deficiency predisposing to disseminated coccidioidomycosis. Clin Infect Dis. 2011;52(4):e99–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zerbe CS, Holland SM. Disseminated histoplasmosis in persons with interferon-γ receptor 1 deficiency. Clin Infect Dis. 2005;41(4):38–41.

    Google Scholar 

  78. Odio CD, Lee Milligan K, McGowan K, Rudman Spergel AK, Bishop R, Boris L, et al. Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome. J Allergy Clin Immunol. 2015;136(5):1411–1413.e2.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Powers AE, Bender JM, Kumánovics A, Ampofo K, Augustine N, Pavia AT, et al. Coccidioides immitis meningitis in a patient with hyperimmunoglobulin E syndrome due to a novel mutation in signal transducer and activator of transcription. Pediatr Infect Dis J. 2009;28(7):664–6.

    PubMed  Google Scholar 

  80. Sampaio EP, Hsu AP, Pechacek J, Bax HI, Dias DL, Paulson ML, et al. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. J Allergy Clin Immunol. 2013;131(6):1624–1634.e17.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Spinner MA, Ker JP, Stoudenmire CJ, Fadare O, Mace EM, Orange JS, et al. GATA2 deficiency underlying severe blastomycosis and fatal herpes simplex virus–associated hemophagocytic lymphohistiocytosis. J Allergy Clin Immunol. 2016;137(2):638–40.

    CAS  PubMed  Google Scholar 

  82. Tu RK, Peters ME, Gourley GR, Hong R. Esophageal histoplasmosis in a child with immunodeficiency with hyper-IgM. Am J Roentgenol. 1991;157(2):381–2.

    CAS  Google Scholar 

  83. Hostoffer RW, Berger M, Clark HT, Schreiber JR. Disseminated histoplasma capsulatum in a patient with hyper IgM immunodeficiency. Pediatrics. 1994;94(2):234–6.

    CAS  PubMed  Google Scholar 

  84. Yilmaz GG, Yilmaz E, Coşkun M, Karpuzoǧlu G, Gelen T, Yeǧin O. Cutaneous histoplasmosis in a child with hyper-IgM. Pediatr Dermatol. 1995;12(3):235–8.

    CAS  PubMed  Google Scholar 

  85. • Lovell JP, Foruraghi L, Freeman AF, Uzel G, Zerbe CS, Su H, et al. Persistent nodal histoplasmosis in NF-κB essential modulator (NEMO) deficiency: report of a case and review of infection in primary immunodeficiencies. J Allergy Clin Immunol. 2016;138(3):903–5 Review of all published cases of histoplasmosis in patients with PIDs.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Duncan RA, von Reyn CF, Alliegro GM, Toossi Z, Sugar AM, Levitz SM. Idiopathic CD4+ T-lymphocytopenia--four patients with opportunistic infections and no evidence of HIV infection. N Engl J Med. 1993;328(6):393–8.

    CAS  PubMed  Google Scholar 

  87. Spira TJ, Jones BM, Nicholson JK, Lal RB, Rowe T, Mawle AC, et al. Idiopathic CD4+ T-lymphocytopenia--an analysis of five patients with unexplained opportunistic infections. N Engl J Med. 1993;328(6):386–92.

    CAS  PubMed  Google Scholar 

  88. Relia N, Kavimandan A, Sinha S, Sharma SK. Disseminated histoplasmosis as the first presentation of idiopathic CD4+ T-lymphocytopenia. J Postgrad Med. 2010;56(1):39–40.

    CAS  PubMed  Google Scholar 

  89. Nucci M, Anaissie E. Fusarium infections in immunocompromised patients. Clin Microbiol Rev. 2007;20(4):695–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mellouli F, Ksouri H, Barbouche R, Maamer M, Hamed LB, Hmida S, et al. Successful treatment of fusarium solani ecthyma gangrenosum in a patient affected by leukocyte adhesion deficiency type 1 with granulocytes transfusions. BMC Dermatol. 2010;10:10.

    PubMed  PubMed Central  Google Scholar 

  91. Moroti RV, Gheorghita V, Al-Hatmi AMS, de Hoog GS, Meis JF, Netea MG. Fusarium ramigenum, a novel human opportunist in a patient with common variable immunodeficiency and cellular immune defects: case report. BMC Infect Dis. 2016;16:79.

    PubMed  PubMed Central  Google Scholar 

  92. Wang X, Lin Z, Gao L, Wang A, Wan Z, Chen W, et al. Exome sequencing reveals a signal transducer and activator of transcription 1 (STAT1) mutation in a child with recalcitrant cutaneous fusariosis. J Allergy Clin Immunol. 2013;131(4):1242–3.

    CAS  PubMed  Google Scholar 

  93. Okura Y, Kawamura N, Okano M, Toita N, Takezaki S, Yamada M, et al. Fusarium falciforme infection in a patient with chronic granulomatous disease: unique long-term course of epidural abscess. Pediatr Int. 2015;57(1):e4–6.

    PubMed  Google Scholar 

  94. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17(8):873–81.

    PubMed  PubMed Central  Google Scholar 

  95. Levy J, Espanol-Boren T, Thomas C, Fischer A, Tovo P, Bordigoni P, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997;131(1 Pt 1):47–54.

    CAS  PubMed  Google Scholar 

  96. Malheiro L, Lazzara D, Xerinda S, Pinheiro MD, Sarmento A. Cryptococcal meningoencephalitis in a patient with hyper immunoglobulin M (IgM) syndrome: a case report. BMC Res Notes. 2014;7:566.

    PubMed  PubMed Central  Google Scholar 

  97. Mitsui-Sekinaka K, Imai K, Sato H, Tomizawa D, Kajiwara M, Nagasawa M, et al. Clinical features and hematopoietic stem cell transplantations for CD40 ligand deficiency in Japan. J Allergy Clin Immunol. 2015;136(4):1018–24.

    PubMed  Google Scholar 

  98. França TT, Leite LFB, Maximo TA, Lambert CG, Zurro NB, Forte WCN, et al. A novel de novo mutation in the CD40 ligand gene in a patient with a mild X-linked hyper-IgM phenotype initially diagnosed as CVID: new aspects of old diseases. Front Pediatr. 2018;6:130.

    PubMed  PubMed Central  Google Scholar 

  99. Lee M-Y, Chung J-H, Shin J-H, Hwang T-J, Kim K-S, Lee J-H, et al. Lymphonodular cryptococcosis diagnosed by fine needle aspiration cytology in hyper-IgM syndrome. Acta Cytol. 2001;45(2):241–4.

    CAS  PubMed  Google Scholar 

  100. Jo EK, Kim HS, Lee MY, Iseki M, Lee JH, Song CH, et al. X-linked hyper-IgM syndrome associated with Cryptosporidium parvum and Cryptococcus neoformans infections: the first case with molecular diagnosis in Korea. J Korean Med Sci. 2002;17(1):116–20.

    PubMed  PubMed Central  Google Scholar 

  101. Zonios DI, Falloon J, Huang C-Y, Chaitt D, Bennett JE. Cryptococcosis and idiopathic CD4 lymphocytopenia. Medicine (Baltimore). 2007;86(2):78–92.

    Google Scholar 

  102. Vinh DC, Patel SY, Uzel G, Anderson VL, Freeman AF, Olivier KN, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood. 2010;115(8):1519–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Panackal AA, Rosen LB, Uzel G, Davis MJ, Hu G, Adeyemo A, et al. Susceptibility to cryptococcal meningoencephalitis associated with idiopathic CD4+ lymphopenia and secondary germline or acquired defects. Open Forum Infect Dis. 2017;4(2):oxf082.

    Google Scholar 

  104. Rosen LB, Freeman AF, Yang LM, Jutivorakool K, Olivier KN, Angkasekwinai N, et al. Anti–GM-CSF autoantibodies in patients with cryptococcal meningitis. J Immunol. 2013;190(8):3959–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kuo C-Y, Wang S-Y, Shih H-P, Tu K-H, Huang W-C, Ding J-Y, et al. Disseminated cryptococcosis due to anti-granulocyte-macrophage colony-stimulating factor autoantibodies in the absence of pulmonary alveolar proteinosis. J Clin Immunol. 2017;37(2):143–52.

    CAS  PubMed  Google Scholar 

  106. Browne SK, Burbelo PD, Chetchotisakd P, Suputtamongkol Y, Kiertiburanakul S, Shaw PA, et al. Adult-onset immunodeficiency in Thailand and Taiwan. N Engl J Med. 2012;367(8):725–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mourad A, Perfect JR. Present and future therapy of cryptococcus infections. J Fungi. 2018;4(3):79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Meyts.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Current Management of Fungal Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucciol, G., Moens, L. & Meyts, I. Patients with Primary Immunodeficiencies: How Are They at Risk for Fungal Disease?. Curr Fungal Infect Rep 12, 170–178 (2018). https://doi.org/10.1007/s12281-018-0323-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-018-0323-z

Keywords

Navigation