Skip to main content
Log in

Emerging Antifungal Drug Resistance in Aspergillus fumigatus and Among Other Species of Aspergillus

  • Fungal Genomics and Pathogenesis (S Shoham, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to give an overview of recent findings on antifungal resistance in Aspergillus fumigatus (the major causative agent of aspergillosis) and sibling Aspergillus species, which can be hidden agents of aspergillosis.

Recent Findings

Azole resistance by Cyp51A mutation in A. fumigatus is a growing problem worldwide. The resistance can occur in patients or in the environment. The former occurs by drug selection in the host, inducing mutations in Cyp51A. The latter is characterized by a tandem repeat in the promoter region of cyp51A gene and mutation(s) in Cyp51A. Environmental resistant strains are prevailing rapidly and globally. Moreover, efflux pump and biofilm formation are closely related with antifungal resistance of A. fumigatus. Finally, sibling species of Aspergillus are described with regard to antifungal resistance.

Summary

Environmental azole-resistant strains have newly emerged and been dispersed globally, and continuous survey and countermeasures are urgently needed against these strains. Although the contributions of Cyp51A and efflux pumps to antifungal resistance are becoming clear, other resistance mechanisms remain unclear. Further investigations including genome comparisons will help to clarify the novel resistant mechanisms and to develop countermeasures or novel antifungal drugs against resistant strains of A. fumigatus and other Aspergillus species that have low susceptibility to antifungal therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Bitar D, Lortholary O, Le SY, Nicolau J, Coignard B, Tattevin P, et al. Population-based analysis of invasive fungal infections. Emerg Infect Dis. 2014;20:1149–55.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50:1091–100.

    Article  PubMed  Google Scholar 

  3. Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50:1101–11.

    Article  PubMed  Google Scholar 

  4. Suzuki Y, Kume H, Togano T, Kanoh Y, Ohto H. Epidemiology of visceral mycoses in autopsy cases in Japan: the data from 1989 to 2009 in the Annual Of Pathological Autopsy Cases in Japan. Med Mycol. 2013;51:522–6.

    Article  PubMed  Google Scholar 

  5. • Suzuki Y, Kenjo A, Togano T, Yamamoto N, Ohto H, Kume H. Infectious diseases in solid organ transplant recipients: analysis of autopsied cases in Japan. J Infect Chemother 2017;23:531–537. It is the most recent update of an epidemiological database of deep mycoses among autopsy cases in Japan.

  6. Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latgé JP, Steinbach WJ. Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med. 2014;5:a019786.

    Article  PubMed  CAS  Google Scholar 

  7. Montagna MT, Lovero G, Coretti C, Martinelli D, Delia M, De Giglio O, et al. SIMIFF study: Italian fungal registry of mold infections in hematological and non-hematological patients. Infection 2014;42:141–151.

  8. Tashiro T, Izumikawa K, Tashiro M, Takazono T, Morinaga Y, Yamamoto K, et al. Diagnostic significance of Aspergillus species isolated from respiratory samples in an adult pneumology ward. Med Mycol. 2011;49:581–7.

    PubMed  Google Scholar 

  9. Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA. Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell 2005;4:625–632.

  10. Barrs VR, van Doorn TM, Houbraken J, Kidd SE, Martin P, Pinheiro MD, et al. Aspergillus felis sp. nov., an emerging agent of invasive aspergillosis in humans, cats, and dogs. PLoS One 2013;8:e64871.

  11. Vinh DC, Shea YR, Sugui JA, Parrilla-Castellar ER, Freeman AF, Campbell JW, et al. Invasive aspergillosis due to Neosartorya udagawae. Clin Infect Dis. 2009;49:102–11.

    Article  PubMed  Google Scholar 

  12. Kano R, Itamoto K, Okuda M, Inokuma H, Hasegawa A, Balajee SA. Isolation of Aspergillus udagawae from a fatal case of feline orbital aspergillosis. Mycoses. 2008;51:360–1.

    Article  PubMed  CAS  Google Scholar 

  13. Balajee SA, Kano R, Baddley JW, Moser SA, Marr KA, Alexander BD, et al. Molecular identification of Aspergillus species collected for the transplant-associated infection surveillance network. J Clin Microbiol. 2009;47:3138–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Balajee SA, Lindsley MD, Iqbal N, Ito J, Pappas PG, Brandt ME. Nonsporulating clinical isolate identified as Petromyces alliaceus (Anamorph Aspergillus alliaceus) by morphological and sequence-based methods. J Clin Microbiol. 2007;45:2701–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Alastruey-Izquierdo A, Mellado E, Peláez T, Pemán J, Zapico S, Alvarez M, et al. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP study). Antimicrob Agents Chemother. 2013;57:3380–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Morio F, Jensen RH, Le Pape P, Arendrup MC. Molecular basis of antifungal drug resistance in yeasts. Int J Antimicrob Agents. 2017;50:599–606.

    Article  PubMed  CAS  Google Scholar 

  17. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4:481–511.

    Google Scholar 

  18. Takahashi-Nakaguchi A, Muraosa Y, Hagiwara D, Sakai K, Toyotome T, Watanabe A, et al. Genome sequence comparison of Aspergillus fumigatus strains isolated from patients with pulmonary aspergilloma and chronic necrotizing pulmonary aspergillosis. Med Mycol. 2015;53:353–60.

    Article  PubMed  CAS  Google Scholar 

  19. Hagiwara D, Takahashi H, Kusuya Y, Kawamoto S, Kamei K, Gonoi T. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy. BMC Genomics. 2016;17:358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005;438:1151–1156.

  21. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438:1157–61.

    Article  PubMed  Google Scholar 

  22. Nierman WC, Yu J, Fedorova-Abrams ND, Losada L, Cleveland TE, Bhatnagar D, et al. Genome sequence of Aspergillus flavus NRRL 3357, a strain that causes aflatoxin contamination of food and feed. Genome Announc. 2015;3:e00168–15.

    PubMed  PubMed Central  Google Scholar 

  23. Pel HJ, De Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol. 2007;25:221–31.

    Article  PubMed  Google Scholar 

  24. Savitha J, Bhargavi SD, Praveen VK. Complete genome sequence of soil fungus Aspergillus terreus (KM017963), a potent lovastatin producer. Genome Announc. 2016;4:e00491–16.

    PubMed  PubMed Central  Google Scholar 

  25. Kusuya Y, Sakai K, Kamei K, Takahashi H, Yaguchi T. Draft genome sequence of the pathogenic filamentous fungus Aspergillus lentulus IFM 54703T. Genome Announc. 2016;4:e01568–15.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kusuya Y, Takahashi-Nakaguchi A, Takahashi H, Yaguchi T. Draft genome sequence of the pathogenic filamentous fungus Aspergillus udagawae strain IFM 46973T. Genome Announc. 2015;3:e00834–15.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Verweij PE, Ananda-Rajah M, Andes D, Arendrup MC, Brüggemann RJ, Chowdhary A, et al. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist Updat. 2015;21–22:30–40.

    Article  PubMed  Google Scholar 

  28. Izumikawa K, Tashiro M, Kohno S. Current status of drug-resistant Aspergillus: evolution of resistance and future. Japanese J Chemother. 2013;61:149–56.

    CAS  Google Scholar 

  29. Resendiz Sharpe A, Lagrou K, Meis JF, Chowdhary A, Lockhart SR, Verweij PE, et al. Triazole resistance surveillance in Aspergillus fumigatus. Med Mycol 2018;56:83–92.

  30. van der Linden JWM, Arendrup MC, Warris A, Lagrou K, Pelloux H, Hauser PM, et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg Infect Dis. 2015;21:1041–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Camps SMT, Van Der Linden JWM, Li Y, Kuijper EJ, Van Dissel JT, Verweij PE, et al. Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: a case study and review of the literature. Antimicrob Agents Chemother 2012;56:10–16.

  32. Hagiwara D, Takahashi H, Watanabe A, Takahashi-Nakaguchi A, Kawamoto S, Kamei K, et al. Whole-genome comparison of Aspergillus fumigatus strains serially isolated from patients with aspergillosis. J Clin Microbiol. 2014;52:4202–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Toyotome T, Fujiwara T, Kida H, Matsumoto M, Wada T, Komatsu R. Azole susceptibility in clinical and environmental isolates of Aspergillus fumigatus from eastern Hokkaido, Japan. J Infect Chemother. 2016;22:648–50.

    Article  PubMed  CAS  Google Scholar 

  34. Tashiro M, Izumikawa K, Hirano K, Ide S, Mihara T, Hosogaya N, et al. Correlation between triazole treatment history and susceptibility in clinically isolated Aspergillus fumigatus. Antimicrob Agents Chemother 2012;56:4870–4875.

  35. • Lazzarini C, Esposto MC, Prigitano A, Cogliati M, De Lorenzis G, Tortorano AM. Azole resistance in Aspergillus fumigatus clinical isolates from an italian culture collection. Antimicrob Agents Chemother. 2016;60:682–5. This manuscript describe TR-type strains isolated in 1998 in Italy.

    Article  PubMed  CAS  Google Scholar 

  36. Snelders E, Van Der Lee HAL, Kuijpers J, Rijs AJMM, Varga J, Samson RA, et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med 2008;5:1629–1637.

  37. Hagiwara D, Takahashi H, Fujimoto M, Sugahara M, Misawa Y, Gonoi T, et al. Multi-azole resistant Aspergillus fumigatus harboring Cyp51A TR46/Y121F/T289A isolated in Japan. J Infect Chemother. 2016;22:577–9.

    Article  PubMed  CAS  Google Scholar 

  38. Toyotome T, Hagiwara D, Kida H, Ogi T, Watanabe A, Wada T, et al. First clinical isolation report of azole-resistant Aspergillus fumigatus with TR34/L98H-type mutation in Japan. J Infect Chemother. 2017;23:579–81.

    Article  PubMed  Google Scholar 

  39. Onishi K, Muhammad Sarumoh B, Hagiwara D, Watanabe A, Kamei K, Toyotome T. Azole-resistant Aspergillus fumigatus containing a 34-bp tandem repeat in cyp51A promoter is isolated from the environment in Japan. Med Mycol J. 2017;58:E67–70.

    Article  PubMed  Google Scholar 

  40. •• Dunne K, Hagen F, Pomeroy N, Meis JF, Rogers TR. Inter-country transfer of triazole-resistant Aspergillus fumigatus on plant bulbs. Clin Infect Dis . 2017;65:147–9. TR-type strains were isolated from imported plant bulbs, and authors hypothesize that it is a route for intercountry transfer of resistant strains.

  41. Liu M, Zheng N, Li D, Zheng H, Zhang L, Ge H, et al. Cyp51A-based mechanism of azole resistance in Aspergillus fumigatus: illustration by a new 3D structural model of Aspergillus fumigatus CYP51A protein. Med Mycol. 2016;54:400–8.

    Article  PubMed  CAS  Google Scholar 

  42. Mellado E, Garcia-Effron G, Alcázar-Fuoli L, Melchers WJG, Verweij PE, Cuenca-Estrella M, et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother. 2007;51:1897–904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. •• Zhang J, Snelders E, Zwaan BJ, Schoustra SE, Meis JF, van Dijk K, et al. A novel environmental azole resistance mutation in Aspergillus fumigatus and a possible role of sexual reproduction in its emergence. MBio 2017;8:1–13. This manuscript showed that composts contaning azole residues might be important for resistant development and a possible role of sexual reproduction in the emerging novel azole rsistant mutation.

  44. •• Gsaller F, Hortschansky P, Furukawa T, Carr PD, Rash B, Capilla J, et al. Sterol biosynthesis and azole tolerance is governed by the opposing actions of SrbA and the CCAAT binding complex. PLoS Pathog. 2016;12:e1005775. This manuscript describes the opposing role of SrbA and CBC in the regulation of sterol biosynthesis including cyp51A reguration.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Albarrag AM, Anderson MJ, Howard SJ, Robson GD, Warn PA, Sanglard D, et al. Interrogation of related clinical pan-azole-resistant Aspergillus fumigatus strains: G138C, Y431C, and G434C single nucleotide polymorphisms in cyp51A, upregulation of cyp51A, and integration and activation of transposon Atf1 in the cyp51A promoter. Antimicrob Agents Chemother. 2011;55:5113–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Camps SMT, Dutilh BE, Arendrup MC, Rijs AJMM, Snelders E, Huynen MA, et al. Discovery of a hapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing. PLoS One. 2012;7:e50034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. • Hagiwara D, Watanabe A, Kamei K. Sensitisation of an azole-resistant Aspergillus fumigatus strain containing the Cyp51A-related mutation by deleting the SrbA gene. Sci Rep. 2016;6:38833. This manuscript demonstrated that by deleting of srbA gene, the TR 46 strains become hypersensitive to azoles.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. •• Hagiwara D, Miura D, Shimizu K, Paul S, Ohba A, Gonoi T, et al. A novel Zn2 -Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of aspergillus fumigatus by co- regulating cyp51A and cdr1B expressions. PLoS Pathog 2017;13:1–31. The novel transcription factor, AtrR, plays an important role in azole resistance of A . fumigatus , especially by controling cyp51A and cdr1B gene expressions.

  49. Buied A, Moore CB, Denning DW, Bowyer P. High-level expression of cyp51B in azole-resistant clinical Aspergillus fumigatus isolates. J Antimicrob Chemother. 2013;68:512–4.

    Article  PubMed  CAS  Google Scholar 

  50. Prasad R, De Wergifosse P, Goffeau A, Balzi E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet. 1995;27:320–9.

    Article  PubMed  CAS  Google Scholar 

  51. Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology. 1997;143:405–16.

    Article  PubMed  CAS  Google Scholar 

  52. Fling ME, Kopf J, Tamarkin A, Gorman JA, Smith HA, Koltin Y. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet. 1991;227:318–29.

    Article  PubMed  CAS  Google Scholar 

  53. Fraczek MG, Bromley M, Buied A, Moore CB, Rajendran R, Rautemaa R, et al. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 2013;68:1486–1496.

  54. Paul S, Diekema D, Moye-Rowley WS. Contributions of Aspergillus fumigatus ATP-binding cassette transporter proteins to drug resistance and virulence. Eukaryot Cell. 2013;12:1619–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Meneau I, Coste AT, Sanglard D. Identification of Aspergillus fumigatus multidrug transporter genes and their potential involvement in antifungal resistance. Med Mycol. 2016;54:616–27.

    Article  PubMed  CAS  Google Scholar 

  56. Cavalheiro M, Teixeira MC. Candida biofilms: threats, challenges, and promising strategies. Front Med. 2018;5:1–15.

    Article  Google Scholar 

  57. Borghi E, Borgo F, Morace G. Fungal biofilms: update on resistance. Adv Exp Med Biol. 2016;931:37–47.

    Article  PubMed  Google Scholar 

  58. Desai JV, Mitchell AP, Andes DR. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med. 2014;4:a019729–9.

  59. Mowat E, Butcher J, Lang S, Williams C, Ramage G. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J Med Microbiol. 2007;56:1205–12.

    Article  PubMed  CAS  Google Scholar 

  60. Mowat E, Lang S, Williams C, McCulloch E, Jones B, Ramage G. Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J Antimicrob Chemother. 2008;62:1281–4.

    Article  PubMed  CAS  Google Scholar 

  61. Mowat E, Williams C, Jones B, McChlery S, Ramage G. The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm? Med Mycol. 2009;47:S120–6.

    Article  PubMed  CAS  Google Scholar 

  62. Seidler MJ, Salvenmoser S, Müller FMC. Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother. 2008;52:4130–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E, Henry C, et al. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol. 2007;9:1588–600.

    Article  PubMed  CAS  Google Scholar 

  64. Toyotome T, Yamaguchi M, Iwasaki A, Watanabe A, Taguchi H, Qin L, et al. Fetuin A, a serum component, promotes growth and biofilm formation by Aspergillus fumigatus. Int J Med Microbiol. 2012;302:108–16.

    Article  PubMed  CAS  Google Scholar 

  65. Bruns S, Seidler M, Albrecht D, Salvenmoser S, Remme N, Hertweck C, et al. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics. 2010;10:3097–107.

    Article  PubMed  CAS  Google Scholar 

  66. Shopova I, Bruns S, Thywissen A, Kniemeyer O, Brakhage AA, Hillmann F. Extrinsic extracellular DNA leads to biofilm formation and colocalizes with matrix polysaccharides in the human pathogenic fungus Aspergillus fumigatus. Front Microbiol. 2013;4:1–11.

    Article  Google Scholar 

  67. Loussert C, Schmitt C, Prevost MC, Balloy V, Fadel E, Philippe B, et al. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol. 2010;12:405–10.

    Article  PubMed  CAS  Google Scholar 

  68. Wuren T, Toyotome T, Yamaguchi M, Takahashi-Nakaguchi A, Muraosa Y, Yahiro M, et al. Effect of serum components on biofilm formation by Aspergillus fumigatus and other Aspergillus species. Jpn J Infect Dis. 2014;67:172–9.

    Article  PubMed  CAS  Google Scholar 

  69. Ramage G, VandeWalle K, López-Ribot JL, Wickes BL. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett. 2002;214:95–100.

    Article  PubMed  CAS  Google Scholar 

  70. Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, et al. Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother. 2007;51:510–20.

    Article  PubMed  CAS  Google Scholar 

  71. Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun. 2003;71:4333–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. da Silva Ferreira ME, Malavazi I, Savoldi M, Brakhage AA, Goldman MHS, Kim HS, et al. Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet. 2006;50:32–44.

    Article  PubMed  CAS  Google Scholar 

  73. Rajendran R, Mowat E, McCulloch E, Lappin DF, Jones B, Lang S, et al. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob Agents Chemother. 2011;55:2092–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Tamiya H, Ochiai E, Kikuchi K, Yahiro M, Toyotome T, Watanabe A, et al. Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans. J Infect Chemother. 2015;21:385–91.

    Article  PubMed  CAS  Google Scholar 

  75. Yoshida H, Seki M, Umeyama T, Urai M, Kinjo Y, Nishi I, et al. Invasive pulmonary aspergillosis due to Aspergillus lentulus: successful treatment of a liver transplant patient. J Infect Chemother 2015;21:479–481.

  76. Hashimoto A, Hagiwara D, Watanabe A, Yahiro M, Yikelamu A, Yaguchi T, et al. Drug sensitivity and resistance mechanism in Aspergillus section Nigri strains from Japan. Antimicrob Agents Chemother 2017;61:1–10.

  77. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53:41–4.

    Article  PubMed  CAS  Google Scholar 

  78. Dolande M, García N, Capote AM, Panizo MM, Ferrara G, Alarcón V. Candida auris: antifungal multi-resistant emerging yeast. Curr Fungal Infect Rep. 2017;11:197–202.

    Article  Google Scholar 

  79. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64:134–40.

    Article  PubMed  Google Scholar 

  80. Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 2011;7:e1002257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Enago (www.enago.jp) for the English language review.

Funding

This work was supported by AMED under Grant Numbers JP18jm0110015, JP19fm0208024, and JP18fk0108208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahito Toyotome.

Ethics declarations

Conflict of Interest

Katsuhiko Kamei declares grants from Pfizer, Astellas, Dainihon-Sumitomo Pharma, MSD, and Ninon Nohyaku; and honoraria from Astellas, Pfizer, MSD, Dainihon-Sumitomo Pharma, AstraZeneca, and Janssen.

Akira Watanabe declares grants from Astellas, AstraZeneca, MSD, Dainihon-Sumitomo, Beckman Coulter, Tashio Toyama Pharma, and Maruho Co; and has served as a supervisor for Pfizer and Astellas.

Takahito Toyotome, Daisuke Hagiwara, and Hiroki Takahashi declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Fungal Genomics and Pathogenesis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toyotome, T., Hagiwara, D., Takahashi, H. et al. Emerging Antifungal Drug Resistance in Aspergillus fumigatus and Among Other Species of Aspergillus. Curr Fungal Infect Rep 12, 105–111 (2018). https://doi.org/10.1007/s12281-018-0318-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-018-0318-9

Keywords

Navigation