Skip to main content
Log in

Cell-surface expression of Aspergillus saitoi-derived functional α-1,2-mannosidase on Yarrowia lipolytica for glycan remodeling

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Expression of proteins on the surface of yeast has a wide range of applications, such as development of live vaccines, screening of antibody libraries, and use as whole-cell biocatalysts. The hemiascomycetes yeast Yarrowia lipolytica has been raised as a potential host for heterologous expression of recombinant proteins. In this study, we report the expression of Aspergillus saitoi α-1,2-mannosidase, encoded by the msdS gene, on the cell surface of Y. lipolytica. As the first step to achieve the secretory expression of msdS protein, four different signal sequences-derived from the endogenous Y. lipolytica Lip2 and Xpr2 prepro regions and the heterologous A. niger α-amylase and rice α-amylase signal sequences-were analyzed for their secretion efficiency. It was shown that the YlLip2 prepro sequence was most efficient in directing the secretory expression of msdS in fully N-glycosylated forms. The surface display of msdS was subsequently directed by fusing GPI anchoring motifs derived from Y. lipolytica cell wall proteins, YlCwp1p and YlYwp1p, respectively, to the C-terminus of the Lip2 prepro-msdS protein. The expression of actively functional msdS protein on the cell surface was confirmed by western blot, flow cytometry analysis, along with the α-1,2-mannosidase activity assay using intact Y. lipolytica cells as the enzyme source. Furthermore, the glycoengineered Y. lipolytica Δoch1Δmpo1 strains displaying α-1,2-mannosidase were able to convert Man8GlcNAc2 to Man5GlcNAc2 efficiently on their cell-wall mannoproteins, demonstrating its potential used for glycoengineering in vitro or in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, H., Shimma, Y., and Jigami, Y. 2003. In vitro oligosaccharide synthesis using intact yeast cells that display glycosyltransferases at the cell surface through cell wall-anchored protein Pir. Glycobiology 13, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Bae, W., Chen, W., Mulchandani, A., and Mehra, R.K. 2000. Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol. Bioeng. 70, 518–524.

    Article  CAS  PubMed  Google Scholar 

  • Bal, J., Lee, H.J., Cheon, S.A., Lee, K.J., Oh, D.B., and Kim, J.Y. 2013. Ylpex5 mutation partially suppresses the defective hyphal growth of a Yarrowia lipolytica ceramide synthase mutant, Yllac1, by recovering lipid raft polarization and vacuole morphogenesis. Fungal Genet. Biol. 50, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Boder, E.T. and Wittrup, K.D. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D.C., Beckerich, J.M., and Gaillardin, C. 1997. One-step transformation of the dimorphic yeast Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 48, 232–235.

    Article  CAS  PubMed  Google Scholar 

  • Cheon, S.A., Choo, J., Ubiyvovk, V.M., Park, J.N., Kim, M.W., Oh, D.B., Kwon, O., Sibirny, A.A., Kim, J.Y., and Kang, H.A. 2009. New selectable host-marker systems for multiple genetic manipulations based on TRP1, MET2 and ADE2 in the methylotrophic yeast Hansenula polymorpha. Yeast 26, 507–521.

    Article  CAS  PubMed  Google Scholar 

  • Cheon, S.A., Han, E.J., Kang, H.A., Ogrydziak, D.M., and Kim, J.Y. 2003. Isolation and characterization of the TRP1 gene from the yeast Yarrowia lipolytica and multiple gene disruption using a TRP blaster. Yeast 20, 677–685.

    Article  CAS  PubMed  Google Scholar 

  • Chiba, Y., Suzuki, M., Yoshida, S., Yoshida, A., Ikenaga, H., Takeuchi, M., Jigami, Y., and Ichishima, E. 1998. Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J. Biol. Chem. 273, 26298–26304.

    Article  CAS  PubMed  Google Scholar 

  • Choi, B.K., Bobrowicz, P., Davidson, R.C., Hamilton, S.R., Kung, D.H., Li, H., Miele, R.G., Nett, J.H., Wildt, S., and Gerngross, T.U. 2003. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc. Natl. Acad. Sci. USA 100, 5022–5027.

    Article  CAS  PubMed  Google Scholar 

  • Fournier, P., Abbas, A., Chasles, M., Kudla, B., Ogrydziak, D.M., Yaver, D., Xuan, J.W., Peito, A., Ribet, A.M., Feynerol, C., and et al. 1993. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc. Natl. Acad. Sci. USA 90, 4912–4916.

    Article  CAS  PubMed  Google Scholar 

  • Jaafar, L., Moukadiri, I., and Zueco, J. 2003. Characterization of a disulphide-bound Pir-cell wall protein (Pir-CWP) of Yarrowia lipolytica. Yeast 20, 417–426.

    Article  CAS  PubMed  Google Scholar 

  • Jaafar, L. and Zueco, J. 2004. Characterization of a glycosylphosphatidylinositol-bound cell-wall protein (GPI-CWP) in Yarrowia lipolytica. Microbiology 150, 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z.B., Song, H.T., Gupta, N., Ma, L.X., and Wu, Z.B. 2007. Cell surface display of functionally active lipases from Yarrowia lipolytica in Pichia pastoris. Protein Expr. Purif. 56, 35–39.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.W., Kim, E.J., Kim, J.Y., Park, J.S., Oh, D.B., Shimma, Y., Chiba, Y., Jigami, Y., Rhee, S.K., and Kang, H.A. 2006. Functional characterization of the Hansenula polymorpha HOC1, OCH1, and OCR1 genes as members of the yeast OCH1 mannosyltransferase family involved in protein glycosylation. J. Biol. Chem. 281, 6261–6272.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.Y., Sohn, J.H., Pyun, Y.R., and Choi, E.S. 2002. A cell surface display system using novel GPI-anchored proteins in Hansenula polymorpha. Yeast 19, 1153–1163.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, Y. and Kitahara, E. 2000. Structural analysis of free N-glycans occurring in soybean seedlings and dry seeds. Biosci. Biotechnol. Biochem. 64, 1847–1855.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K.M. 2005. Development of surface display system in Yarrowia lipolytica. Chung-Nam National University, Korea.

    Google Scholar 

  • Lee, J.S., Shin, K.S., Pan, J.G., and Kim, C.J. 2000. Surface-displayed viral antigens on Salmonella carrier vaccine. Nat. Biotechnol. 18, 645–648.

    Article  CAS  PubMed  Google Scholar 

  • Madzak, C., Gaillardin, C., and Beckerich, J.M. 2004. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J. Biotechnol. 109, 63–81.

    Article  CAS  PubMed  Google Scholar 

  • Oh, D.B., Park, J.S., Kim, M.W., Cheon, S.A., Kim, E.J., Moon, H.Y., Kwon, O., Rhee, S.K., and Kang, H.A. 2008. Glycoengineering of the methylotrophic yeast Hansenula polymorpha for the production of glycoproteins with trimannosyl core N-glycan by blocking core oligosaccharide assembly. Biotechnol. J. 3, 659–668.

    Article  CAS  PubMed  Google Scholar 

  • Park, C.S., Chang, C.C., Kim, J.Y., Ogrydziak, D.M., and Ryu, D.D. 1997. Expression, secretion, and processing of rice α-amylase in the yeast Yarrowia lipolytica. J. Biol. Chem. 272, 6876–6881.

    Article  CAS  PubMed  Google Scholar 

  • Park, J.N., Song, Y., Cheon, S.A., Kwon, O., Oh, D.B., Jigami, Y., Kim, J.Y., and Kang, H.A. 2011. Essential role of YlMPO1, a novel Yarrowia lipolytica homologue of Saccharomyces cerevisiae MNN4, in mannosylphosphorylation of N- and O-linked glycans. Appl. Environ. Microbiol. 77, 1187–1195.

    Article  CAS  PubMed  Google Scholar 

  • Ramon, A.M., Montero, M., Sentandreu, R., and Valentin, E. 1999. Yarrowia lipolytica cell wall architecture: interaction of Ywp1, a mycelial protein, with other wall components and the effect of its depletion. Res. Microbiol. 150, 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Richins, R.D., Kaneva, I., Mulchandani, A., and Chen, W. 1997. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat. Biotechnol. 15, 984–987.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y., Choi, M.H., Park, J.N., Kim, M.W., Kim, E.J., Kang, H.A., and Kim, J.Y. 2007. Engineering of the yeast Yarrowia lipolytica for the production of glycoproteins lacking the outer-chain mannose residues of N-glycans. Appl. Environ. Microbiol. 73, 4446–4454.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, T., Yamada, R., Ogino, C., and Kondo, A. 2012. Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl. Microbiol. Biotechnol. 95, 577–591.

    Article  CAS  PubMed  Google Scholar 

  • Tsugawa, R., Nakase, T., Koyabashi, T., Yamashita, K., and Okumura, S. 1969. Fermentation of n-paraffins by yeast. Part III. α-Ketoglutarate productivity of various yeasts. Agric Biol. Chem. 33, 929–938.

    Article  CAS  Google Scholar 

  • Uccelletti, D., De Jaco, A., Farina, F., Mancini, P., Augusti-Tocco, G., Biagioni, S., and Palleschi, C. 2002. Cell surface expression of a GPI-anchored form of mouse acetylcholinesterase in Klpmr1 Delta cells of Kluyveromyces lactis. Biochem. Biophys. Res. Commun. 298, 559–565.

    Article  CAS  PubMed  Google Scholar 

  • Ueda, M. and Tanaka, A. 2000. Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J. Biosci. Bioeng. 90, 125–136.

    CAS  PubMed  Google Scholar 

  • Xu, Z. and Lee, S.Y. 1999. Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Appl. Environ. Microbiol. 65, 5142–5147.

    CAS  PubMed  Google Scholar 

  • Yang, J., Kang, H.A., Ko, S.M., Chae, S.K., Ryu, D.D., and Kim, J.Y. 2001. Cloning of the Aspergillus niger pmrA gene, a homologue of yeast PMR1, and characterization of a pmrA null mutant. FEMS Microbiol. Lett. 199, 97–102.

    Article  CAS  PubMed  Google Scholar 

  • Yuzbasheva, E., Yuzbashev, T., Laptev, I., Konstantinova, T., and Sineoky, S. 2011. Efficient cell surface display of Lip2 lipase using C-domains of glycosylphosphatidylinositol-anchored cell wall proteins of Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 91, 645–654.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ah Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, H.Y., Van, T.L., Cheon, S.A. et al. Cell-surface expression of Aspergillus saitoi-derived functional α-1,2-mannosidase on Yarrowia lipolytica for glycan remodeling. J Microbiol. 51, 506–514 (2013). https://doi.org/10.1007/s12275-013-3344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-3344-x

Keywords

Navigation