Skip to main content
Log in

Pd single-atom catalysts derived from strong metal-support interaction for selective hydrogenation of acetylene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Selective hydrogenation of acetylene in excess ethylene is an important reaction in both fundamental study and practical application. Pd-based catalysts with high intrinsic activity are commonly employed, but usually suffer from low selectivity. Pd single-atom catalysts (SACs) usually exhibit outstanding ethylene selectivity due to the weak π-bonding ethylene adsorption. However, the preparation of high-loading and stable Pd SACs is still confronted with a great challenge. In this work, we report a simple strategy to fabricate Pd SACs by means of reducing conventional supported Pd catalysts at suitable temperatures to selectively encapsulate the co-existed Pd nanoparticles (NPs)/clusters. This is based on our new finding that single atoms only manifest strong metal-support interaction (SMSI) at higher reduction temperature than that of NPs/clusters. The derived Pd SACs (Pd1/CeO2 and Pd1/α-Fe2O3) were applied to acetylene selective hydrogenation, exhibiting much improved ethylene selectivity and high stability. This work offers a promising way to develop stable Pd SACs easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borodziński, A.; Bond, G. C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev. 2006, 48, 91–144.

    Article  Google Scholar 

  2. Borodziński, A.; Bond, G. C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2: Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal. Rev. 2008, 50, 379–469.

    Article  Google Scholar 

  3. García-Mota, M.; Gómez-Díaz, J.; Novell-Leruth, G.; Vargas-Fuentes, C.; Bellarosa, L.; Bridier, B.; Pérez-Ramírez, J.; López, N. A density functional theory study of the “mythic” lindlar hydrogenation catalyst. Theor. Chem. Acc. 2011, 128, 663–673.

    Article  Google Scholar 

  4. Teschner, D.; Borsodi, J.; Wootsch, A.; Revay, Z.; Havecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlogl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86–89.

    Article  CAS  Google Scholar 

  5. Albani, D.; Shahrokhi, M.; Chen, Z. P.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634.

    Article  Google Scholar 

  6. Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pd−Zn−Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054–1061.

    Article  CAS  Google Scholar 

  7. Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. L. et al. Isolated single-atom Pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.

    Article  CAS  Google Scholar 

  8. Shao, L. D.; Zhang, W.; Armbrüster, M.; Teschner, D.; Girgsdies, F.; Zhang, B. S.; Timpe, O.; Friedrich, M.; Schlögl, R.; Su, D. S. Nanosizing intermetallic compounds onto carbon nanotubes: Active and selective hydrogenation catalysts. Angew. Chem., Int. Ed. 2011, 50, 10231–10235.

    Article  CAS  Google Scholar 

  9. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

    Article  CAS  Google Scholar 

  10. Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X. L.; Yang, X. F.; Wang, X. D.; Tai, Z. J. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717–3725.

    Article  CAS  Google Scholar 

  11. Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Li, L.; Huang, Y. Q.; Zhang, T.; Lee, J. W.; Jang, B. W. L.; Mou, C. Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J. Chem. 2014, 38, 2043–2051.

    Article  CAS  Google Scholar 

  12. Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

    Article  CAS  Google Scholar 

  13. Kovnir, K.; Armbrüster, M.; Teschner, D.; Venkov, T. V.; Szentmiklósi, L.; Jentoft, F. C.; Knop-Gericke, A.; Grin, Y.; Schlögl, R. In situ surface characterization of the intermetallic compound PdGa—A highly selective hydrogenation catalyst. Surf. Sci. 2009, 603, 1784–1792.

    Article  CAS  Google Scholar 

  14. Li, X. T.; Chen, L.; Shang, C.; Liu, Z. P. In situ surface structures of PdAg catalyst and their influence on acetylene semihydrogenation revealed by machine learning and experiment. J. Am. Chem. Soc. 2021, 143, 6281–6292.

    Article  CAS  Google Scholar 

  15. Zheng, W. J.; Wang, Y.; Wang, B. J.; Fan, M. H.; Ling, L. X.; Zhang, R. G. C2H2 selective hydrogenation to C2H4: Engineering the surface structure of Pd-based alloy catalysts to adjust the catalytic performance. J. Phys. Chem. C 2021, 125, 15251–15261.

    Article  CAS  Google Scholar 

  16. Kim, S. K.; Lee, J. H.; Ahn, I. Y.; Kim, W. J.; Moon, S. H. Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation. App. Catal. A Gen. 2011, 401, 12–19.

    Article  CAS  Google Scholar 

  17. Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

    Article  CAS  Google Scholar 

  18. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  19. Wang, X.; Zhang, Y. W.; Wu, J.; Zhang, Z.; Liao, Q. L.; Kang, Z.; Zhang, Y. Single-atom engineering to ignite 2D transition metal dichalcogenide based catalysis: Fundamentals, progress, and beyond. Chem. Rev. 2022, 122, 1273–1348.

    Article  CAS  Google Scholar 

  20. Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

    Article  CAS  Google Scholar 

  21. Wang, Y. X.; Su, H. Y.; He, Y. H.; Li, L. G.; Zhu, S. Q.; Shen, H.; Xie, P. F.; Fu, X. B.; Zhou, G. Y.; Feng, C. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 2020, 120, 12217–12314.

    Article  CAS  Google Scholar 

  22. Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

    Article  CAS  Google Scholar 

  23. Zhou, X. M. TiO2-supported single-atom catalysts for photocatalytic reactions. Acta Phys. Chim. Sin. 2021, 37, 2008064.

    Google Scholar 

  24. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    Article  CAS  Google Scholar 

  25. Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

    Article  CAS  Google Scholar 

  26. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

    Article  CAS  Google Scholar 

  27. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    Article  CAS  Google Scholar 

  28. Ge, X. X.; Zhou, P.; Zhang, Q. H.; Xia, Z. H.; Chen, S. L.; Gao, P.; Zhang, Z.; Gu, L.; Guo, S. J. Palladium single atoms on TiO2 as a photocatalytic sensing platform for analyzing the organophosphorus pesticide chlorpyrifos. Angew. Chem., Int. Ed. 2020, 59, 232–236.

    Article  CAS  Google Scholar 

  29. Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C. L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908.

    Article  CAS  Google Scholar 

  30. Tauster, S. J.; Fung, S. C. Strong metal-support interactions: Occurrence among the binary oxides of groups IIA–VB. J. Catal. 1978, 55, 29–35.

    Article  CAS  Google Scholar 

  31. Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175.

    Article  CAS  Google Scholar 

  32. Tauster, S. J. Strong metal-support interactions. Acc. Chem. Res. 1987, 20, 389–394.

    Article  CAS  Google Scholar 

  33. Bernal, S.; Calvino, J. J.; Cauqui, M. A.; Gatica, J. M.; Cartes, C. L.; Omil, J. A. P.; Pintado, J. M. Some contributions of electron microscopy to the characterisation of the strong metal-support interaction effect. Catal. Today 2003, 77, 385–406.

    Article  CAS  Google Scholar 

  34. Naito, S.; Aida, S.; Kasahara, T.; Miyao, T. Infrared spectroscopic study on the reaction mechanism of CO hydrogenation over Pd/CeO2. Res. Chem. Intermed. 2006, 32, 279–290.

    Article  CAS  Google Scholar 

  35. d’Alnoncourt, R. N.; Friedrich, M.; Kunkes, E.; Rosenthal, D.; Girgsdies, F.; Zhang, B. S.; Shao, L. D.; Schuster, M.; Behrens, M.; Schlögl, R. Strong metal-support interactions between palladium and iron oxide and their effect on CO oxidation. J. Catal. 2014, 317, 220–228.

    Article  Google Scholar 

  36. Bernal, S.; Botana, F. J.; Calvino, J. J.; Cifredo, G. A.; Pérez-Omil, J. A.; Pintado, J. M. HREM study of the behaviour of a Rh/CeO2 catalyst under high temperature reducing and oxidizing conditions. Catal. Today 1995, 23, 219–250.

    Article  CAS  Google Scholar 

  37. Kast, P.; Friedrich, M.; Teschner, D.; Girgsdies, F.; Lunkenbein, T.; d’Alnoncourt, R. N.; Behrens, M.; Schlögl, R. CO oxidation as a test reaction for strong metal-support interaction in nanostructured Pd/FeO powder catalysts. Appl. Catal. A Gen. 2015, 502, 8–17.

    Article  CAS  Google Scholar 

  38. Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121–1125.

    Article  CAS  Google Scholar 

  39. Liu, X. Y.; Liu, M. H.; Luo, Y. C.; Mou, C. Y.; Lin, S. D.; Cheng, H. K.; Chen, J. M.; Lee, J. F.; Lin, T. S. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 2012, 134, 10251–10258.

    Article  CAS  Google Scholar 

  40. Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Xu, C. Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.

    Article  CAS  Google Scholar 

  41. Hu, P. P.; Huang, Z. W.; Amghouz, Z.; Makkee, M.; Xu, F.; Kapteijn, F.; Dikhtiarenko, A.; Chen, Y. X.; Gu, X.; Tang, X. F. Electronic metal-support interactions in single-atom catalysts. Angew. Chem., Int. Ed. 2014, 53, 3418–3421.

    Article  CAS  Google Scholar 

  42. Bruix, A.; Rodriguez, J. A.; Ramírez, P. J.; Senanayake, S. D.; Evans, J.; Park, J. B.; Stacchiola, D.; Liu, P.; Hrbek, J.; Illas, F. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 2012, 144, 8968–8974.

    Article  Google Scholar 

  43. Du, X. R.; Huang, Y. K.; Pan, X. L.; Han, B.; Su, Y.; Jiang, Q. K.; Li, M. R.; Tang, H. L.; Li, G.; Qiao, B. T. Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts. Nat. Commun. 2020, 11, 5811.

    Article  CAS  Google Scholar 

  44. Ma, D. Size-dependent strong metal-support interaction. Acta Phys. Chim. Sin. 2022, 38, 2101039.

    Google Scholar 

  45. Wang, H.; Wang, L.; Lin, D.; Feng, X.; Niu, Y. M.; Zhang, B. S.; Xiao, F. S. Strong metal-support interactions on gold nanoparticle catalysts achieved through Le chatelier’s principle. Nat. Catal. 2021, 4, 418–424.

    Article  CAS  Google Scholar 

  46. Zhang, Y. S.; Liu, J. X.; Qian, K.; Jia, A. P.; Li, D.; Shi, L.; Hu, J.; Zhu, J. F.; Huang, W. X. Structure sensitivity of Au-TiO2 strong metal-support interactions. Angew. Chem., Int. Ed. 2021, 60, 12074–12081.

    Article  CAS  Google Scholar 

  47. Tang, H. L.; Liu, F.; Wei, J. K.; Qiao, B. T.; Zhao, K. F.; Su, Y.; Jin, C. Z.; Li, L.; Liu, J. Y.; Wang, J. H. et al. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal-support interaction for carbon monoxide oxidation. Angew. Chem., Int. Ed. 2016, 55, 10606–10611.

    Article  CAS  Google Scholar 

  48. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2012, 60, 19085–19091.

    Article  Google Scholar 

  49. Dong, J. H.; Fu, Q.; Li, H. B.; Xiao, J. P.; Yang, B.; Zhang, B. S.; Bai, Y. X.; Song, T. Y.; Zhang, R. K.; Gao, L. J. et al. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 2020, 142, 17167–17174.

    Article  CAS  Google Scholar 

  50. Li, W. H.; Yang, J. R.; Jing, H. Y.; Zhang, J.; Wang, Y.; Li, J.; Zhao, J.; Wang, D. S.; Li, Y. D. Creating high regioselectivity by electronic metal-support interaction of a single-atomic-site catalyst. J. Am. Chem. Soc. 2021, 143, 15453–15461.

    Article  CAS  Google Scholar 

  51. Han, B.; Guo, Y. L.; Huang, Y. K.; Xi, W.; Xu, J.; Luo, J.; Qi, H. F.; Ren, Y. J.; Liu, X. Y.; Qiao, B. T. et al. Strong metal-support interactions between Pt single atoms and TiO2. Angew. Chem., Int. Ed. 2020, 59, 11824–11829.

    Article  CAS  Google Scholar 

  52. Chen, F.; Li, T. B.; Pan, X. L.; Guo, Y. L.; Han, B.; Liu, F.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Pd1/CeO2 single-atom catalyst for alkoxycarbonylation of aryl iodides. Sci. China Mater. 2020, 63, 959–964.

    Article  CAS  Google Scholar 

  53. Spezzati, G.; Su, Y. Q.; Hofmann, J. P.; Benavidez, A. D.; DeLaRiva, A. T.; McCabe, J.; Datye, A. K.; Hensen, E. J. M. Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation. ACS Catal. 2017, 7, 6887–6891.

    Article  CAS  Google Scholar 

  54. Lou, Y.; Jiang, F.; Zhu, W.; Wang, L.; Yao, T. Y.; Wang, S. S.; Yang, B.; Yang, B.; Zhu, Y. F.; Liu, X. H. CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol. Appl. Catal. B Environ. 2021, 291, 120122.

    Article  CAS  Google Scholar 

  55. Haller, G. L.; Resasco, D. E. Metal-support interaction: Group VIII metals and reducible oxides. Adv. Catal. 1989, 36, 173–235.

    CAS  Google Scholar 

  56. Binet, C.; Jadi, A.; Lavalley, J. C.; Boutonnet-Kizling, M. Metal support interaction in Pd/CeO2 catalysts: Fourier-transform infrared studies of the effects of the reduction temperature and metal loading. Part 1.-Catalysts prepared by the microemulsion technique. J. Chem. Soc. Faraday Trans. 1992, 88, 2079–2084.

    Article  CAS  Google Scholar 

  57. Trovarelli, A.; Dolcetti, G.; De Leitenburg, C.; Kašpar, J.; Finetti, P.; Santoni, A. Rh−CeO2 Interaction induced by high-temperature reduction. Characterization and catalytic behaviour in transient and continuous conditions. J. Chem. Soc. Faraday Trans. 1992, 88, 1311–1319.

    Article  CAS  Google Scholar 

  58. Aitbekova, A.; Wu, L. H.; Wrasman, C. J.; Boubnov, A.; Hoffman, A. S.; Goodman, E. D.; Bare, S. R.; Cargnello, M. Low-temperature restructuring of CeO2-supported Ru nanoparticles determines selectivity in CO2 catalytic reduction. J. Am. Chem. Soc. 2018, 140, 13736–13745.

    Article  CAS  Google Scholar 

  59. Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  Google Scholar 

  60. Newton, M. A.; Belver-Coldeira, C.; Martínez-Arias, A.; Fernández-García, M. “Oxidationless” promotion of rapid palladium redispersion by oxygen during redox CO/(NO+O2) cycling. Angew. Chem., Int. Ed. 2007, 46, 8629–8631.

    Article  CAS  Google Scholar 

  61. Jeong, H.; Bae, J.; Han, J. W.; Lee, H. Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 2017, 7, 7097–7105.

    Article  CAS  Google Scholar 

  62. Xin, P. Y.; Li, J.; Xiong, Y.; Wu, X.; Dong, J. C.; Chen, W. X.; Wang, Y.; Gu, L.; Luo, J.; Rong, H. P. et al. Revealing the active species for aerobic alcohol oxidation by using uniform supported palladium catalysts. Angew. Chem., Int. Ed. 2018, 57, 4642–4646.

    Article  CAS  Google Scholar 

  63. Ma, J.; Lou, Y.; Cai, Y. F.; Zhao, Z. Y.; Wang, L.; Zhan, W. C.; Guo, Y. L.; Guo, Y. The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO2. Catal. Sci. Technol. 2018, 8, 2567–2577.

    Article  CAS  Google Scholar 

  64. Chen, Y. X.; Chen, J. X.; Qu, W. Y.; George, C.; Aouine, M.; Vernoux, P.; Tang, X. F. Well-defined palladium-ceria interfacial electronic effects trigger CO oxidation. Chem. Commun. 2018, 54, 10140–10143.

    Article  CAS  Google Scholar 

  65. Boronin, A. I.; Slavinskaya, E. M.; Danilova, I. G.; Gulyaev, R. V.; Amosov, Y. I.; Kuznetsov, P. A.; Polukhina, I. A.; Koscheev, S. V.; Zaikovskii, V. I.; Noskov, A. S. Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal. Today 2009, 144, 201–211.

    Article  CAS  Google Scholar 

  66. Gulyaev, R. V.; Stadnichenko, A. I.; Slavinskaya, E. M.; Ivanova, A. S.; Koscheev, S. V.; Boronin, A. I. In situ preparation and investigation of Pd/CeO2 catalysts for the low-temperature oxidation of CO. Appl. Catal. A Gen. 2012, 439–440, 41–50.

    Article  Google Scholar 

  67. Zhang, Y. H.; Cai, Y. F.; Guo, Y.; Wang, H. F.; Wang, L.; Lou, Y.; Guo, Y. L.; Lu, G. Z.; Wang, Y. Q. The effects of the Pd chemical state on the activity of Pd/Al2O3 catalysts in CO oxidation. Catal. Sci. Technol. 2014, 4, 3973–3980.

    Article  CAS  Google Scholar 

  68. Luo, Y.; Villaseca, S. A.; Friedrich, M.; Teschner, D.; Knop-Gericke, A.; Armbrüster, M. Addressing electronic effects in the semi-hydrogenation of ethyne by in Pd2 and intermetallic Ga-Pd compounds. J. Catal. 2016, 338, 265–272.

    Article  CAS  Google Scholar 

  69. Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146.

    Article  CAS  Google Scholar 

  70. Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747.

    Article  Google Scholar 

  71. Armbrüster, M.; Wowsnick, G.; Friedrich, M.; Heggen, M.; Cardoso-Gil, R. Synthesis and catalytic properties of nanoparticulate intermetallic Ga-Pd compounds. J. Am. Chem. Soc. 2011, 133, 9112–9118.

    Article  Google Scholar 

  72. Vilé, G.; Bridier, B.; Wichert, J.; Pérez-Ramírez, J. Ceria in hydrogenation catalysis: High selectivity in the conversion of alkynes to olefins. Angew. Chem., Int. Ed. 2012, 51, 8620–8623.

    Article  Google Scholar 

  73. Haller, G. L. New catalytic concepts from new materials: Understanding catalysis from a fundamental perspective, past, present, and future. J. Catal. 2003, 216, 12–22.

    Article  CAS  Google Scholar 

  74. Vignola, E.; Steinmann, S. N.; Al Farra, A.; Vandegehuchte, B. D.; Curulla, D.; Sautet, P. Evaluating the risk of C−C bond formation during selective hydrogenation of acetylene on palladium. ACS Catal. 2018, 8, 1662–1671.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21972135, 21961142006, and 51701201), CAS Project for Young Scientists in Basic Research (No. YSBR-022), and the National Key Research and Development Program of China (No. 2021YFA1500503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qike Jiang or Botao Qiao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Li, Y., Du, X. et al. Pd single-atom catalysts derived from strong metal-support interaction for selective hydrogenation of acetylene. Nano Res. 15, 10037–10043 (2022). https://doi.org/10.1007/s12274-022-4376-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4376-5

Keywords

Navigation