Skip to main content
Log in

Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atomically thin two-dimensional (2D) materials exhibit enormous potential in photodetectors because of novel and extraordinary properties, such as passivated surfaces, tunable bandgaps, and high mobility. High-performance photodetectors based on 2D materials have been fabricated for broadband, position, polarization-sensitive detection, and large-area array imaging. However, the current performance of 2D material photodetectors is not outstanding enough, including response speed, detectivity, and so forth. The way to further promote the development of 2D material photodetectors and their corresponding practical applications is still a tremendous challenge. In this article, these issues of 2D material photodetectors are analyzed and expected to be solved by combining micro-nano characterization technologies. The inherent physical properties of 2D materials and photodetectors can be accurately characterized by Raman spectroscopy, transmission electron microscopy (TEM), and scattering scanning near-field optical microscope (s-SNOM). In particular, the precise probe of lattice defects, doping concentration, and near-field light absorption characteristics can promote the researches of low-noise and high-responsivity photodetectors. Scanning photocurrent microscope (SPCM) can show the overall spatial distribution of photocurrent and analyze the mechanism of photocurrent. Photoluminescence (PL) spectroscopy and Kelvin probe force microscope (KPFM) can characterize the material bandgap, work function distribution and interlayer coupling characteristics, making it possible to design high-performance photodetectors through energy band engineering. These advanced characterization techniques cover the entire process from material growth, to device preparation, and to performance analysis, and systematically reveal the development status of 2D material photodetectors. Finally, the prospects and challenges are discussed to promote the application of 2D material photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Long, M. S.; Liu, E. F.; Wang, P.; Gao, A. Y.; Xia, H.; Luo, W.; Wang, B. G.; Zeng, J. W.; Fu, Y. J.; Xu, K. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254–2259.

    CAS  Google Scholar 

  2. Jung, M.; Rickhaus, P.; Zihlmann, S.; Makk, P.; Schönenberger, C. Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction. Nano Lett. 2016, 16, 6988–6993.

    CAS  Google Scholar 

  3. Zhang, K.; Fang, X.; Wang, Y. L.; Wan, Y.; Song, Q. J.; Zhai, W. H.; Li, Y. P.; Ran, G. Z.; Ye, Y.; Dai, L. Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der waals heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 5392–5398.

    CAS  Google Scholar 

  4. Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53–60.

    CAS  Google Scholar 

  5. Zeng, B. B.; Huang, Z. Q.; Singh, A.; Yao, Y.; Azad, A. K.; Mohite, A. D.; Taylor, A. J.; Smith, D. R.; Chen, H. T. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 2018, 7, 51.

    Google Scholar 

  6. Islam, S.; Mishra, J. K.; Kumar, A.; Chatterjee, D.; Ravishankar, N.; Ghosh, A. Ultra-sensitive graphene-bismuth telluride nano-wire hybrids for infrared detection. Nanoscale 2019, 11, 1579–1586.

    CAS  Google Scholar 

  7. Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet—Visible to infrared. Small 2017, 13, 1700894.

    Google Scholar 

  8. Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.

    CAS  Google Scholar 

  9. Mao, J.; Yu, Y. Q.; Wang, L.; Zhang, X. J.; Wang, Y. M.; Shao, Z. B.; Jie, J. S. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 2016, 3, 1600018.

    Google Scholar 

  10. Wei, X.; Yan, F. G.; Lv, Q. S.; Shen, C.; Wang, K. Y. Fast gate-tunable photodetection in the graphene sandwiched WSe2/GaSe heterojunctions. Nanoscale 2017, 9, 8388–8392.

    CAS  Google Scholar 

  11. Lv, Q. S.; Yan, F. G.; Wei, X.; Wang, K. Y. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.

    Google Scholar 

  12. Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

    CAS  Google Scholar 

  13. Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905–3911.

    CAS  Google Scholar 

  14. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

    CAS  Google Scholar 

  15. Liang, Q. J.; Wang, Q. X.; Zhang, Q.; Wei, J. X.; Lim, S. X.; Zhu, R.; Hu, J. X.; Wei, W.; Lee, C.; Sow, C. H. et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019, 31, 1807609.

    Google Scholar 

  16. Jariwala, D.; Davoyan, A. R.; Wong, J.; Atwater, H. A. van der Waals materials for atomically-thin photovoltaics: Promise and outlook. ACS Photonics 2017, 4, 2962–2970.

    CAS  Google Scholar 

  17. Li, A. L.; Chen, Q. X.; Wang, P. P.; Gan, Y.; Qi, T. L.; Wang, P.; Tang, F. D.; Wu, J. Z.; Chen, R.; Zhang, L. Y. et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/graphene/SnS2 p-g-n junctions. Adv. Mater. 2019, 31, 1805656.

    Google Scholar 

  18. Tang, B.; Hou, L. F.; Sun, M.; Lv, F. J.; Liao, J. H.; Ji, W.; Chen, Q. UV-SWIR broad range photodetectors made from few-layer α-In2Se3 nanosheets. Nanoscale 2019, 11, 12817–12828.

    CAS  Google Scholar 

  19. Chen, W. J.; Liang, R. R.; Zhang, S. Q.; Liu, Y.; Cheng, W. J.; Sun, C. C.; Xu, J. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res. 2020, 13, 127–132.

    CAS  Google Scholar 

  20. Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev, R. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764–767.

    CAS  Google Scholar 

  21. Roy, T.; Tosun, M.; Kang, J. S.; Sachid, A. B.; Desai, S. B.; Hettick, M.; Hu, C. C.; Javey, A. Field-effect transistors built from all two-dimensional material components. ACS Nano 2014, 8, 6259–6264.

    CAS  Google Scholar 

  22. Choi, K.; Lee, Y. T.; Kim, J. S.; Min, S. W.; Cho, Y.; Pezeshki, A.; Hwang, D. K.; Im, S. Non-lithographic fabrication of all-2D α-MoTe2 dual gate transistors. Adv. Funct. Mater. 2016, 26, 3146–3153.

    CAS  Google Scholar 

  23. Liao, M. Z.; Wu, Z. W.; Du, L. J.; Zhang, T. T.; Wei, Z.; Zhu, J. Q.; Yu, H.; Tang, J.; Gu, L.; Xing, Y. X. et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 2018, 9, 4068.

    Google Scholar 

  24. Chen, P. Y.; Zhang, X. Q.; Lai, Y. Y.; Lin, E. C.; Chen, C. A.; Guan, S. Y.; Chen, J. J.; Yang, Z. H.; Tseng, Y. W.; Gwo, S. et al. Tunable moiré superlattice of artificially twisted monolayers. Adv. Mater. 2019, 31, 1901077.

    Google Scholar 

  25. Liao, M. Z.; Wei, Z.; Du, L. J.; Wang, Q. Q.; Tang, J.; Yu, H.; Wu, F. F.; Zhao, J. J.; Xu, X. Z.; Han, B. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 2020, 11, 2153.

    CAS  Google Scholar 

  26. Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. A.; Juang, Z. Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.

    CAS  Google Scholar 

  27. Zhang, X. F.; Wu, T. R.; Jiang, Q.; Wang, H. S.; Zhu, H. L.; Chen, Z. Y.; Jiang, R.; Niu, T. C.; Li, Z. J.; Zhang, Y. W. et al. Epitaxial growth of 6 in. Single-crystalline graphene on a Cu/Ni (111) film at 750 °C via chemical vapor deposition. Small 2019, 15, 1805395.

    Google Scholar 

  28. Shin, B. G.; Boo, D. H.; Song, B.; Jeon, S.; Kim, M.; Park, S.; An, E. S.; Kim, J. S.; Song, Y. J.; Lee, Y. H. Single-crystalline monolayer graphene wafer on dielectric substrate of SiON without metal catalysts. ACS Nano 2019, 13, 6662–6669.

    CAS  Google Scholar 

  29. Chen, Z. L.; Qi, Y.; Chen, X. D.; Zhang, Y. F.; Liu, Z. F. Direct CVD growth of graphene on traditional glass: Methods and mechanisms. Adv. Mater. 2019, 31, 1803639.

    Google Scholar 

  30. Wang, L.; Xu, X. Z.; Zhang, L. N.; Qiao, R. X.; Wu, M. H.; Wang, Z. C.; Zhang, S.; Liang, J.; Zhang, Z. H.; Zhang, Z. B. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570, 91–95.

    CAS  Google Scholar 

  31. Li, J. D.; Hu, Z. L.; Yi, Y. F.; Yu, M. L.; Li, X. M.; Zhou, J. X.; Yin, J.; Wu, S. W.; Guo, W. L. Hexagonal boron nitride growth on Cu-Si alloy: Morphologies and large domains. Small 2019, 15, 1805188.

    Google Scholar 

  32. Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30.

    Google Scholar 

  33. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    CAS  Google Scholar 

  34. Wen, Y.; Wang, Q. S.; Yin, L.; Liu, Q.; Wang, F.; Wang, F. M.; Wang, Z. X.; Liu, K. L.; Xu, K.; Huang, Y. et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater. 2016, 28, 8051–8057.

    CAS  Google Scholar 

  35. Hu, X. Z.; Huang, P.; Jin, B.; Zhang, X. W.; Li, H. Q.; Zhou, X.; Zhai, T. Y. Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. J. Am. Chem. Soc. 2018, 140, 12909–12914.

    CAS  Google Scholar 

  36. Zhao, X. X.; Yin, Q.; Huang, H.; Yu, Q.; Liu, B.; Yang, J.; Dong, Z.; Shen, Z. J.; Zhu, B. P.; Liao, L. et al. van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-020-2834-5.

  37. Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252.

    CAS  Google Scholar 

  38. Tao, J.; Shen, W. F.; Wu, S.; Liu, L.; Feng, Z. H.; Wang, C.; Hu, C. G.; Yao, P.; Zhang, H.; Pang, W. et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 2015, 9, 11362–11370.

    CAS  Google Scholar 

  39. Li, L.; Wang, W. K.; Gong, P. L.; Zhu, X. D.; Deng, B.; Shi, X. Q.; Gao, G. Y.; Li, H. Q.; Zhai, T. Y. 2D GeP: An unexploited low-symmetry semiconductor with strong in-plane anisotropy. Adv. Mater. 2018, 30, 1706771.

    Google Scholar 

  40. Yankowitz, M.; Chen, S. W.; Polshyn, H.; Zhang, Y. X.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A. F.; Dean, C. R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064.

    CAS  Google Scholar 

  41. Li, H. Y.; Ying, H.; Chen, X. P.; Nika, D. L.; Cocemasov, A. I.; Cai, W. W.; Balandin, A. A.; Chen, S. S. Thermal conductivity of twisted bilayer graphene. Nanoscale 2014, 6, 13402–13408.

    CAS  Google Scholar 

  42. Finney, N. R.; Yankowitz, M.; Muraleetharan, L.; Watanabe, K.; Taniguchi, T.; Dean, C. R.; Hone, J. Tunable crystal symmetry in graphene-boron nitride heterostructures with coexisting moiré superlattices. Nat. Nanotechnol. 2019, 14, 1029–1034.

    CAS  Google Scholar 

  43. Chen, G. R.; Sharpe, A. L.; Gallagher, P.; Rosen, I. T.; Fox, E. J.; Jiang, L. L.; Lyu, B.; Li, H. Y.; Watanabe, K.; Taniguchi, T. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 2019, 572, 215–219.

    CAS  Google Scholar 

  44. Aji, A. S.; Solís-Fernández, P.; Ji, H. G.; Fukuda, K.; Ago, H. High mobility WS2 transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors. Adv. Funct. Mater. 2017, 27, 1703448.

    Google Scholar 

  45. Yin, L.; Wang, F.; Cheng, R. Q.; Wang, Z. X.; Chu, J. W.; Wen, Y.; He, J. van der Waals heterostructure devices with dynamically controlled conduction polarity and multifunctionality. Adv. Funct. Mater. 2019, 29, 1804897.

    Google Scholar 

  46. Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540.

    CAS  Google Scholar 

  47. Boandoh, S.; Agyapong-Fordjour, F. O. T.; Choi, S. H.; Lee, J. S.; Park, J. H.; Ko, H.; Han, G.; Yun, S. J.; Park, S.; Kim, Y. M. et al. Wafer-scale van der waals heterostructures with ultraclean interfaces via the aid of viscoelastic polymer. ACS Appl. Mater. Interfaces 2019, 11, 1579–1586.

    CAS  Google Scholar 

  48. Cao, S. W.; Xing, Y. H.; Han, J.; Luo, X.; Lv, W. X.; Lv, W. M.; Zhang, B. S.; Zeng, Z. M. Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p-n diode. Nanoscale 2018, 10, 16805–16811.

    CAS  Google Scholar 

  49. Zhao, Q. H.; Jie, W. Q.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R. InSe schottky diodes based on van der Waals contacts. Adv. Funct. Mater. 2020, 30, 2001307.

    CAS  Google Scholar 

  50. Murthy, A. A.; Stanev, T. K.; Cain, J. D.; Hao, S. Q.; LaMountain, T.; Kim, S.; Speiser, N.; Watanabe, K.; Taniguchi, T.; Wolverton, C. et al. Intrinsic transport in 2D heterostructures mediated through h-BN tunneling contacts. Nano Lett. 2018, 18, 2990–2998.

    CAS  Google Scholar 

  51. Liu, H. W.; Zhu, X. L.; Sun, X. X.; Zhu, C. G.; Huang, W.; Zhang, X. H.; Zheng, B. Y.; Zou, Z. X.; Luo, Z. Y.; Wang, X. et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p-n heterojunctions. ACS Nano 2019, 13, 13573–13580.

    CAS  Google Scholar 

  52. Lin, Y. C.; Li, S. S.; Komsa, H. P.; Chang, L. J.; Krasheninnikov, A. V.; Eda, G.; Suenaga, K. Revealing the atomic defects of WS2 governing its distinct optical emissions. Adv. Funct. Mater. 2018, 28, 1704210.

    Google Scholar 

  53. Gao, A. Y.; Zhang, Z. Y.; Li, L. F.; Zheng, B. J.; Wang, C. Y.; Wang, Y. J.; Cao, T. J.; Wang, Y.; Liang, S. J.; Miao, F. et al. Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures. ACS Nano 2020, 14, 434–441.

    CAS  Google Scholar 

  54. Bullock, J.; Amani, M.; Cho, J.; Chen, Y. Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. L. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607.

    CAS  Google Scholar 

  55. Hu, S. Q.; Zhang, Q.; Luo, X. G.; Zhang, X. T.; Wang, T.; Cheng, Y. C.; Jie, W. Q.; Zhao, J. L.; Mei, T.; Gan, X. T. Au-InSe van der Waals Schottky junctions with ultralow reverse current and high photosensitivity. Nanoscale 2020, 12, 4094–4100.

    CAS  Google Scholar 

  56. Su, W. T.; Kumar, N.; Krayev, A.; Chaigneau, M. In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale. Nat. Commun. 2018, 9, 2891.

    Google Scholar 

  57. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    CAS  Google Scholar 

  58. Stadler, J.; Schmid, T.; Zenobi, R. Nanoscale chemical imaging of single-layer graphene. ACS Nano 2011, 5, 8442–8448.

    CAS  Google Scholar 

  59. Verhagen, T.; Guerra, V. L. P.; Haider, G.; Kalbac, M.; Vejpravova, J. Towards the evaluation of defects in MoS2 using cryogenic photoluminescence spectroscopy. Nanoscale 2020, 12, 3019–3028.

    CAS  Google Scholar 

  60. Rosenberger, M. R.; Chuang, H. J.; Phillips, M.; Oleshko, V. P.; McCreary, K. M.; Sivaram, S. V.; Hellberg, C. S.; Jonker, B. T. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 4550–4558.

    CAS  Google Scholar 

  61. Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.

    CAS  Google Scholar 

  62. Wu, F.; Xia, H.; Sun, H. D.; Zhang, J. W.; Gong, F.; Wang, Z.; Chen, L.; Wang, P.; Long, M. S.; Wu, X. et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv. Funct. Mater. 2019, 29, 1900314.

    Google Scholar 

  63. De Sanctis, A.; Jones, G. F.; Wehenkel, D. J.; Bezares, F.; Koppens, F. H. L.; Craciun, M. F.; Russo, S. Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. Sci. Adv. 2017, 3, e1602617.

    Google Scholar 

  64. Dai, S. Y.; Tymchenko, M.; Xu, Z. Q.; Tran, T. T.; Yang, Y. F.; Ma, Q.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Aharonovich, I. et al. Internal nanostructure diagnosis with hyperbolic phonon polaritons in hexagonal boron nitride. Nano Lett. 2018, 18, 5205–5210.

    CAS  Google Scholar 

  65. Hu, X.; Wong, K. P.; Zeng, L. H.; Guo, X. Y.; Liu, T.; Zhang, L.; Chen, Q.; Zhang, X. F.; Zhu, Y.; Fung, K. H. et al. Infrared nanoimaging of surface plasmons in type-II dirac semimetal PtTe2 nanoribbons. ACS Nano 2020, 14, 6276–6284.

    CAS  Google Scholar 

  66. Ali, A.; Shehzad, K.; Guo, H. W.; Wang, Z.; Wang, P.; Qadir, A.; Hu, W. D.; Ren, T. L.; Yu, B.; Xu, Y. High-performance, flexible graphene/ultra-thin silicon ultra-violet image sensor. In Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp 8.6.1–8.6.4.

  67. Guo, N.; Hu, W. D.; Jiang, T.; Gong, F.; Luo, W. J.; Qiu, W. C.; Wang, P.; Liu, L.; Wu, S. W.; Liao, L. et al. High-quality infrared imaging with graphene photodetectors at room temperature. Nanoscale 2016, 8, 16065–16072.

    CAS  Google Scholar 

  68. Engel, M.; Steiner, M.; Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014, 14, 6414–6417.

    CAS  Google Scholar 

  69. Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.

    Google Scholar 

  70. Yin, J. B.; Tan, Z. J.; Hong, H.; Wu, J. X.; Yuan, H. T.; Liu, Y. J.; Chen, C.; Tan, C. W.; Yao, F. R.; Li, T. R. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311.

    Google Scholar 

  71. Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T. et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 2017, 11, 366–371.

    CAS  Google Scholar 

  72. Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

    CAS  Google Scholar 

  73. Tong, L.; Huang, X. Y.; Wang, P.; Ye, L.; Peng, M.; An, L. C.; Sun, Q. D.; Zhang, Y.; Yang, G. M.; Li, Z. et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 2020, 11, 2308.

    CAS  Google Scholar 

  74. Liu, K. Y.; Wang, W. H.; Yu, Y. F.; Hou, X. Y.; Liu, Y. P.; Chen, W.; Wang, X. M.; Lu, J. P.; Ni, Z. H. Graphene-based infrared positionsensitive detector for precise measurements and high-speed trajectory tracking. Nano Lett. 2019, 19, 8132–8137.

    CAS  Google Scholar 

  75. Lee, W.; Liu, Y.; Lee, Y.; Sharma, B. K.; Shinde, S. M.; Kim, S. D.; Nan, K.; Yan, Z.; Han, M. D.; Huang, Y. G. et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 2018, 9, 1417.

    Google Scholar 

  76. Xu, W. N.; Li, T. F.; Qin, Z.; Huang, Q.; Gao, H.; Kang, K.; Park, J.; Buehler, M. J.; Khurgin, J. B.; Gracias, D. H. Reversible MoS2 origami with spatially resolved and reconfigurable photosensitivity. Nano Lett. 2019, 19, 7941–7949.

    CAS  Google Scholar 

  77. Choi, C.; Choi, M. K.; Liu, S. Y.; Kim, M. S.; Park, O. K.; Im, C.; Kim, J.; Qin, X. L.; Lee, G. J.; Cho, K. W. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664.

    Google Scholar 

  78. Lien, M. B.; Liu, C. H.; Chun, I. Y.; Ravishankar, S.; Nien, H.; Zhou, M. M.; Fessler, J. A.; Zhong, Z. H.; Norris, T. B. Ranging and light field imaging with transparent photodetectors. Nat. Photonics 2020, 14, 143–148.

    CAS  Google Scholar 

  79. Huang, Y.; Pan, Y. H.; Yang, R.; Bao, L. H.; Meng, L.; Luo, H. L.; Cai, Y. Q.; Liu, G. D.; Zhao, W. J.; Zhou, Z. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453.

    CAS  Google Scholar 

  80. Iwasaki, T.; Endo, K.; Watanabe, E.; Tsuya, D.; Morita, Y.; Nakaharai, S.; Noguchi, Y.; Wakayama, Y.; Watanabe, K.; Taniguchi, T. et al. Bubble-free transfer technique for high-quality graphene/hexagonal boron nitride van der Waals heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 8533–8538.

    CAS  Google Scholar 

  81. Wakafuji, Y.; Moriya, R.; Masubuchi, S.; Watanabe, K.; Taniguchi, T.; Machida, T. 3D manipulation of 2D materials Using microdome polymer. Nano Lett. 2020, 20, 2486–2492.

    CAS  Google Scholar 

  82. Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S. Q.; Larentis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989–1995.

    CAS  Google Scholar 

  83. Zou, Z. X.; Li, D.; Liang, J. W.; Zhang, X. H.; Liu, H. W.; Zhu, C. G.; Yang, X.; Li, L. H.; Zheng, B. Y.; Sun, X. X. et al. Epitaxial synthesis of ultrathin β-In2Se3/MoS2 heterostructures with high visible/near-infrared photoresponse. Nanoscale 2020, 12, 6480–6488.

    CAS  Google Scholar 

  84. Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

    CAS  Google Scholar 

  85. Sahoo, P. K.; Memaran, S.; Nugera, F. A.; Xin, Y.; Díaz Márquez, T.; Lu, Z. G.; Zheng, W. K.; Zhigadlo, N. D.; Smirnov, D.; Balicas, L. et al. Bilayer lateral heterostructures of transition-metal dichalcogenides and their optoelectronic response. ACS Nano 2019, 13, 12372–12384.

    CAS  Google Scholar 

  86. He, T.; Wang, Z.; Zhong, F.; Fang, H. H.; Wang, P.; Hu, W. D. Etching techniques in 2D materials. Adv. Mater. Technol. 2019, 4, 1900064.

    CAS  Google Scholar 

  87. Das, T.; Seo, D.; Seo, J. E.; Chang, J. Tunable current transport in PdSe2 via layer-by-layer thickness modulation by mild plasma. Adv. Electron. Mater. 2020, 6, 2000008.

    CAS  Google Scholar 

  88. Shim, J.; Oh, A.; Kang, D. H.; Oh, S.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Kim, M.; Choi, C.; Lee, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985–6992.

    CAS  Google Scholar 

  89. Lee, J. H.; Lee, E. K.; Joo, W. J.; Jang, Y.; Kim, B. S.; Lim, J. Y.; Choi, S. H.; Ahn, S. J.; Ahn, J. R.; Park, M. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286–289.

    CAS  Google Scholar 

  90. Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080.

    CAS  Google Scholar 

  91. Ma, W.; Chen, M. L.; Yin, L. C.; Liu, Z. B.; Li, H.; Xu, C.; Xin, X.; Sun, D. M.; Cheng, H. M.; Ren, W. C. Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nat. Commun. 2019, 10, 2809.

    Google Scholar 

  92. Chen, T. A.; Chuu, C. P.; Tseng, C. C.; Wen, C. K.; Wong, H. S. P.; Pan, S. Y.; Li, R. T.; Chao, T. A.; Chueh, W. C.; Zhang, Y. F. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 2020, 579, 219–223.

    CAS  Google Scholar 

  93. Jang, A. R.; Hong, S.; Hyun, C.; Yoon, S. I.; Kim, G.; Jeong, H. Y.; Shin, T. J.; Park, S. O.; Wong, K.; Kwak, S. K. et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 2016, 16, 3360–3366.

    CAS  Google Scholar 

  94. Song, S.; Sim, Y.; Kim, S. Y.; Kim, J. H.; Oh, I.; Na, W.; Lee, D. H.; Wang, J.; Yan, S. L.; Liu, Y. A. et al. Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky-Mott limit. Nat. Electron. 2020, 3, 207–215.

    CAS  Google Scholar 

  95. Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374.

    CAS  Google Scholar 

  96. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    CAS  Google Scholar 

  97. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

    CAS  Google Scholar 

  98. Jiang, J. F.; Meng, F. Q.; Cheng, Q. L.; Wang, A. Z.; Chen, Y. K.; Qiao, J.; Pang, J. B.; Xu, W. D.; Ji, H.; Zhang, Y. et al. Low lattice mismatch InSe-Se vertical Van der Waals heterostructure for high-performance transistors via strong fermi-level depinning. Small Methods 2020, 4, 2000238.

    CAS  Google Scholar 

  99. Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.

    CAS  Google Scholar 

  100. Na, J. H.; Kim, Y.; Smet, J. H.; Burghard, M.; Kern, K. Gate-tunable tunneling transistor based on a thin black phosphorus-SnSe2 heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 20973–20978.

    CAS  Google Scholar 

  101. Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

    CAS  Google Scholar 

  102. Gao, A. Y.; Lai, J. W.; Wang, Y. J.; Zhu, Z.; Zeng, J. W.; Yu, G. L.; Wang, N. Z.; Chen, W. C.; Cao, T. J.; Hu, W. D. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222.

    CAS  Google Scholar 

  103. Wen, Y.; He, P.; Yao, Y. Y.; Zhang, Y.; Cheng, R. Q.; Yin, L.; Li, N. N.; Li, J.; Wang, J. J.; Wang, Z. X. et al. Bridging the van der Waals interface for advanced optoelectronic devices. Adv. Mater. 2020, 32, 1906874.

    CAS  Google Scholar 

  104. Wang, G.; Zhang, M.; Chen, D.; Guo, Q. L.; Feng, X. F.; Niu, T. C.; Liu, X. S.; Li, A.; Lai, J. W.; Sun, D. et al. Seamless lateral graphene p-n junctions formed by selective in situ doping for high-performance photodetectors. Nat. Commun. 2018, 9, 5168.

    Google Scholar 

  105. Liu, D. Y.; Hong, J. H.; Wang, X.; Li, X. B.; Feng, Q. L.; Tan, C. W.; Zhai, T. Y.; Ding, F.; Peng, H. L.; Xu, H. Diverse atomically sharp interfaces and linear dichroism of 1T’ ReS2-ReSe2 lateral p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1804696.

    Google Scholar 

  106. Liu, D. Y.; Hong, J. H.; Li, X. B.; Zhou, X.; Jin, B.; Cui, Q. N.; Chen, J. P.; Feng, Q. L.; Xu, C. X.; Zhai, T. Y. et al. Synthesis of 2H-1T’ WS2-ReS2 heterophase structures with atomically sharp interface via hydrogen-triggered one-pot growth. Adv. Funct. Mater. 2020, 30, 1910169.

    CAS  Google Scholar 

  107. Ullah, F.; Sim, Y.; Le, C. T.; Seong, M. J.; Jang, J. I.; Rhim, S. H.; Tran Khac, B. C.; Chung, K. H.; Park, K.; Lee, Y. J. et al. Growth and simultaneous valleys manipulation of two-dimensional MoSe2-WSe2 lateral heterostructure. ACS Nano 2017, 11, 8822–8829.

    CAS  Google Scholar 

  108. Gant, P.; Huang, P.; Pérezt de Lara, D.; Guo, D.; Frisenda, R.; Castellanos-Gomez, A. A strain tunable single-layer MoS2 photo-detector. Mater. Today 2019, 27, 8–13.

    CAS  Google Scholar 

  109. Maiti, R.; Patil, C.; Saadi, M. A. S. R.; Xie, T.; Azadani, J. G.; Uluutku, B.; Amin, R.; Briggs, A. F.; Miscuglio, M.; Van Thourhout, D. et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics 2020, 14, 578–584.

    CAS  Google Scholar 

  110. Geng, X. S.; Yu, Y. Q.; Zhou, X. L.; Wang, C. D.; Xu, K. W.; Zhang, Y.; Wu, C. Y.; Wang, L.; Jiang, Y.; Yang, Q. Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection. Nano Res. 2016, 9, 2641–2651.

    CAS  Google Scholar 

  111. Flöry, N.; Ma, P.; Salamin, Y.; Emboras, A.; Taniguchi, T.; Watanabe, K.; Leuthold, J.; Novotny, L. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 2020, 15, 118–124.

    Google Scholar 

  112. Schneider, D. S.; Grundmann, A.; Bablich, A.; Passi, V.; Kataria, S.; Kalisch, H.; Heuken, M.; Vescan, A.; Neumaier, D.; Lemme, M. C. Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2. ACS Photonics 2020, 7, 1388–1395.

    CAS  Google Scholar 

  113. Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G. B.; Ma, Y. M.; Wu, D.; Jie, J. S. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.

    CAS  Google Scholar 

  114. Milekhin, A. G.; Rahaman, M.; Rodyakina, E. E.; Latyshev, A. V.; Dzhagan, V. M.; Zahn, D. R. T. Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays. Nanoscale 2018, 10, 2755–2763.

    CAS  Google Scholar 

  115. Huang, T. X.; Cong, X.; Wu, S. S.; Lin, K. Q.; Yao, X.; He, Y. H.; Wu, J. B.; Bao, Y. F.; Huang, S. C.; Wang, X. et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 2019, 10, 5544.

    CAS  Google Scholar 

  116. Lee, C.; Jeong, B. G.; Yun, S. J.; Lee, Y. H.; Lee, S. M.; Jeong, M. S. Unveiling defect-related Raman mode of monolayer WS2 via tip-enhanced resonance Raman scattering. ACS Nano 2018, 12, 9982–9990.

    CAS  Google Scholar 

  117. Jiang, J.; Ling, C. Y.; Xu, T.; Wang, W. H.; Niu, X. H.; Zafar, A.; Yan, Z. Z.; Wang, X. M.; You, Y. M.; Sun, L. T. et al. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 2018, 30, 1804332.

    Google Scholar 

  118. Li, C.; Xiong, K. C.; Li, L.; Guo, Q. S.; Chen, X. L.; Madjar, A.; Watanabe, K.; Taniguchi, T.; Hwang, J. C. M.; Xia, F. N. Black phosphorus high-frequency transistors with local contact bias. ACS Nano 2020, 14, 2118–2125.

    CAS  Google Scholar 

  119. Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

    CAS  Google Scholar 

  120. Xiang, D.; Liu, T.; Wang, J. Y.; Wang, P.; Wang, L.; Zheng, Y.; Wang, Y. N.; Gao, J.; Ang, K. W.; Eda, G. et al. Anomalous broadband spectrum photodetection in 2D rhenium disulfide transistor. Adv. Opt. Mater. 2019, 7, 1901115.

    CAS  Google Scholar 

  121. Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

    CAS  Google Scholar 

  122. Li, C.; Wu, Y.; Deng, B. C.; Xie, Y. J.; Guo, Q. S.; Yuan, S. F.; Chen, X. L.; Bhuiyan, M.; Wu, Z. S.; Watanabe, K. et al. Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 2018, 30, 1703748.

    Google Scholar 

  123. Chen, X. L.; Chen, C.; Levi, A.; Houben, L.; Deng, B. C.; Yuan, S. F.; Ma, C.; Watanabe, K.; Taniguchi, T.; Naveh, D. et al. Large-velocity saturation in thin-film black phosphorus transistors. ACS Nano 2018, 12, 5003–5010.

    CAS  Google Scholar 

  124. Li, X. F.; Yu, Z. Q.; Xiong, X.; Li, T. Y.; Gao, T. T.; Wang, R. S.; Huang, R.; Wu, Y. Q. High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 2019, 5, eaau3194.

    Google Scholar 

  125. Guo, J.; Liu, Y.; Ma, Y.; Zhu, E. B.; Lee, S.; Lu, Z. X.; Zhao, Z. P.; Xu, C. H.; Lee, S. J.; Wu, H. et al. Few-layer GeAs field-effect transistors and infrared photodetectors. Adv. Mater. 2018, 30, 1705934.

    Google Scholar 

  126. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    CAS  Google Scholar 

  127. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    CAS  Google Scholar 

  128. Lee, C. G.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    CAS  Google Scholar 

  129. He, R.; van Baren, J.; Yan, J. A.; Xi, X. X.; Ye, Z. P.; Ye, G. H.; Lu, I. H.; Leong, S. M.; Lui, C. H. Interlayer breathing and shear modes in NbSe2 atomic layers. 2D Mater. 2016, 3, 031008.

    Google Scholar 

  130. Lui, C. H.; Ye, Z. P.; Keiser, C.; Xiao, X.; He, R. Temperature-activated layer-breathing vibrations in few-layer graphene. Nano Lett. 2014, 14, 4615–4621.

    CAS  Google Scholar 

  131. Sui, Y.; Appenzeller, J. Screening and interlayer coupling in multilayer graphene field-effect transistors. Nano Lett. 2009, 9, 2973–2977.

    CAS  Google Scholar 

  132. Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

    CAS  Google Scholar 

  133. Li, H.; Wu, J. B.; Ran, F. R.; Lin, M. L.; Liu, X. L.; Zhao, Y. Y.; Lu, X.; Xiong, Q. H.; Zhang, J.; Huang, W. et al. Interfacial interactions in van der Waals heterostructures of MoS2 and graphene. ACS Nano 2017, 11, 11714–11723.

    CAS  Google Scholar 

  134. Zhou, X.; Hu, X. Z.; Zhou, S. S.; Song, H. Y.; Zhang, Q.; Pi, L. J.; Li, L.; Li, H. Q.; Lü, J. T.; Zhai, T. Y. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater. 2018, 30, 1703286.

    Google Scholar 

  135. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    CAS  Google Scholar 

  136. Li, G. H.; Luican, A.; Lopes dos Santos, J. M. B.; Castro Neto, A. H.; Reina, A.; Kong, J.; Andrei, E. Y. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109–113.

    Google Scholar 

  137. Yoo, H.; Engelke, R.; Carr, S.; Fang, S. A.; Zhang, K.; Cazeaux, P.; Sung, S. H.; Hovden, R.; Tsen, A. W.; Taniguchi, T. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 2019, 18, 448–453.

    CAS  Google Scholar 

  138. Haddadi, F.; Wu, Q. S.; Kruchkov, A. J.; Yazyev, O. V. Moiré flat bands in twisted double bilayer graphene. Nano Lett. 2020, 20, 2410–2415.

    CAS  Google Scholar 

  139. Deng, B. C.; Ma, C.; Wang, Q. Y.; Yuan, S. F.; Watanabe, K.; Taniguchi, T.; Zhang, F.; Xia, F. N. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photonics 2020, 14, 549–553.

    CAS  Google Scholar 

  140. Lui, C. H.; Malard, L. M.; Kim, S.; Lantz, G.; Laverge, F. E.; Saito, R.; Heinz, T. F. Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 2012, 12, 5539–5544.

    CAS  Google Scholar 

  141. Carozo, V.; Almeida, C. M.; Fragneaud, B.; Bedê, P. M.; Moutinho, M. V. O.; Ribeiro-Soares, J.; Andrade, N. F.; Souza Filho, A. G.; Matos, M. J. S.; Wang, B. et al. Resonance effects on the Raman spectra of graphene superlattices. Phys. Rev. B 2013, 88, 085401.

    Google Scholar 

  142. Xian, L. D.; Kennes, D. M.; Tancogne-Dejean, N.; Altarelli, M.; Rubio, A. Multiflat bands and strong correlations in twisted bilayer boron nitride: Doping-induced correlated insulator and superconductor. Nano Lett. 2019, 19, 4934–4940.

    CAS  Google Scholar 

  143. Zhou, Y. J.; Maity, N.; Rai, A.; Juneja, R.; Meng, X. H.; Roy, A.; Zhang, Y. Y.; Xu, X. C.; Lin, J. F.; Banerjee, S. K. et al. Stackingorder-driven optical properties and carrier dynamics in ReS2. Adv. Mater. 2020, 32, 1908311.

    CAS  Google Scholar 

  144. Carozo, V.; Almeida, C. M.; Ferreira, E. H. M.; Cançado, L. G.; Achete, C. A.; Jorio, A. Raman signature of graphene superlattices. Nano Lett. 2011, 11, 4527–4534.

    CAS  Google Scholar 

  145. Eliel, G. S. N.; Moutinho, M. V. O.; Gadelha, A. C.; Righi, A.; Campos, L. C.; Ribeiro, H. B.; Chiu, P. W.; Watanabe, K.; Taniguchi, T.; Puech, P. et al. Intralayer and interlayer electron-phonon interactions in twisted graphene heterostructures. Nat. Commun. 2018, 9, 1221.

    CAS  Google Scholar 

  146. Wu, J. B.; Zhang, X.; Ijäs, M.; Han, W. P.; Qiao, X. F.; Li, X. L.; Jiang, D. S.; Ferrari, A. C.; Tan, P. H. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014, 5, 5309.

    CAS  Google Scholar 

  147. Yang, J.; Xu, R. J.; Pei, J. J.; Myint, Y. W.; Wang, F.; Wang, Z.; Zhang, S.; Yu, Z. F.; Lu, Y. R. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 2015, 4, e312.

    CAS  Google Scholar 

  148. Ottaviano, L.; Palleschi, S.; Perrozzi, F.; D’Olimpio, G.; Priante, F.; Donarelli, M.; Benassi, P.; Nardone, M.; Gonchigsuren, M.; Gombosuren, M. et al. Mechanical exfoliation and layer number identification of MoS2 revisited. 2D Mater. 2017, 4, 045013.

    Google Scholar 

  149. Du, L. J.; Liao, M. Z.; Tang, J.; Zhang, Q.; Yu, H.; Yang, R.; Watanabe, K.; Taniguchi, T.; Shi, D. X.; Zhang, Q. M. et al. Strongly enhanced exciton-phonon coupling in two-dimensional WSe2. Phys. Rev. B 2018, 97, 235145.

    CAS  Google Scholar 

  150. Pak, J.; Jang, Y.; Byun, J.; Cho, K.; Kim, T. Y.; Kim, J. K.; Choi, B. Y.; Shin, J.; Hong, Y.; Chung, S. et al. Two-dimensional thickness-dependent avalanche breakdown phenomena in MoS2 field-effect transistors under high electric fields. ACS Nano 2018, 12, 7109–7116.

    CAS  Google Scholar 

  151. Chen, C.; Chen, F.; Chen, X. L.; Deng, B. C.; Eng, B.; Jung, D.; Guo, Q. S.; Yuan, S. F.; Watanabe, K.; Taniguchi, T. et al. Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett. 2019, 19, 1488–1493.

    CAS  Google Scholar 

  152. Zhang, Y. S.; Wang, S. W.; Chen, S. L.; Zhang, Q. L.; Wang, X.; Zhu, X. L.; Zhang, X. H.; Xu, X.; Yang, T. F.; He, M. et al. Wavelength-tunable mid-infrared lasing from black phosphorus nanosheets. Adv. Mater. 2020, 32, 1808319.

    CAS  Google Scholar 

  153. Chen, C.; Lu, X. B.; Deng, B. C.; Chen, X. L.; Guo, Q. S.; Li, C.; Ma, C.; Yuan, S. F.; Sung, E.; Watanabe, K. et al. Widely tunable mid-infrared light emission in thin-film black phosphorus. Sci. Adv. 2020, 6, eaay6134.

    CAS  Google Scholar 

  154. Chen, X. L.; Lu, X. B.; Deng, B. C.; Sinai, O.; Shao, Y. C.; Li, C.; Yuan, S. F.; Tran, V.; Watanabe, K.; Taniguchi, T. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.

    Google Scholar 

  155. Afzal, A. M.; Dastgeer, G.; Iqbal, M. Z.; Gautam, P.; Faisal, M. M. High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces 2020, 12, 19625–19634.

    CAS  Google Scholar 

  156. Xue, H.; Wang, Y. D.; Dai, Y. Y.; Kim, W.; Jussila, H.; Qi, M.; Susoma, J.; Ren, Z. Y.; Dai, Q.; Zhao, J. L. et al. A MoSe2/WSe2 heterojunction-based photodetector at telecommunication wavelengths. Adv. Funct. Mater. 2018, 28, 1804388.

    Google Scholar 

  157. Jo, S. H.; Lee, H. W.; Shim, J.; Heo, K.; Kim, M.; Song, Y. J.; Park, J. H. Highly efficient infrared photodetection in a gate-controllable van der Waals heterojunction with staggered bandgap alignment. Adv. Sci. 2018, 5, 1700423.

    Google Scholar 

  158. Ye, T.; Li, J. Z.; Li, D. H. Charge-accumulation effect in transition metal dichalcogenide heterobilayers. Small 2019, 15, 1902424.

    CAS  Google Scholar 

  159. Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014, 14, 3185–3190.

    CAS  Google Scholar 

  160. Ubrig, N.; Ponomarev, E.; Zultak, J.; Domaretskiy, D.; Zólyomi, V.; Terry, D.; Howarth, J.; Gutiérrez-Lezama, I.; Zhukov, A.; Kudrynskyi, Z. R. et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater. 2020, 19, 299–304.

    CAS  Google Scholar 

  161. Varghese, A.; Saha, D.; Thakar, K.; Jindal, V.; Ghosh, S.; Medhekar, N. V.; Ghosh, S.; Lodha, S. Near-direct bandgap WSe2/ReS2 type-II pn heterojunction for enhanced ultrafast photodetection and high-performance photovoltaics. Nano Lett. 2020, 20, 1707–1717.

    CAS  Google Scholar 

  162. Li, F.; Shen, T.; Xu, L.; Hu, C. S.; Qi, J. J. Strain improving the performance of a flexible monolayer MoS2 photodetector. Adv. Electron. Mater. 2019, 5, 1900803.

    CAS  Google Scholar 

  163. Ma, W. D.; Lu, J. F.; Wan, B. S.; Peng, D. F.; Xu, Q.; Hu, G. F.; Peng, Y. Y.; Pan, C. F.; Wang, Z. L. Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Adv. Mater. 2020, 32, 1905795.

    CAS  Google Scholar 

  164. Wu, W. Z.; Wang, L.; Yu, R. M.; Liu, Y. Y.; Wei, S. H.; Hone, J.; Wang, Z. L. Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 2016, 28, 8463–8468.

    CAS  Google Scholar 

  165. Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852–3858.

    CAS  Google Scholar 

  166. Lu, J. T.; Zheng, Z. Q.; Yao, J. D.; Gao, W.; Xiao, Y.; Zhang, M. L.; Li, J. B. An asymmetric contact-induced self-powered 2D In2S3 photodetector towards high-sensitivity and fast-response. Nanoscale 2020, 12, 7196–7205.

    CAS  Google Scholar 

  167. Chen, T. X.; Sheng, Y. W.; Zhou, Y. Q.; Chang, R. J.; Wang, X. C.; Huang, H. F.; Zhang, Q. Y.; Hou, L. L.; Warner, J. H. High photoresponsivity in ultrathin 2D lateral graphene:WS2:graphene photodetectors using direct CVD growth. ACS Appl. Mater. Interfaces 2019, 11, 6421–6430.

    CAS  Google Scholar 

  168. Zheng, C. X.; Zhang, Q. H.; Weber, B.; Ilatikhameneh, H.; Chen, F.; Sahasrabudhe, H.; Rahman, R.; Li, S. Q.; Chen, Z.; Hellerstedt, J. et al. Direct observation of 2D electrostatics and ohmic contacts in template-grown graphene/WS2 heterostructures. ACS Nano 2017, 11, 2785–2793.

    CAS  Google Scholar 

  169. Wu, F.; Li, Q.; Wang, P.; Xia, H.; Wang, Z.; Wang, Y.; Luo, M.; Chen, L.; Chen, F. S.; Miao, J. S. et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.

    Google Scholar 

  170. Duong, N. T.; Lee, J.; Bang, S.; Park, C.; Lim, S. C.; Jeong, M. S. Modulating the functions of MoS2/MoTe2 van der Waals hetero-structure via thickness variation. ACS Nano 2019, 13, 4478–4485.

    CAS  Google Scholar 

  171. Srivastava, P. K.; Hassan, Y.; Gebredingle, Y.; Jung, J.; Kang, B.; Yoo, W. J.; Singh, B.; Lee, C. Multifunctional van der Waals broken-gap heterojunction. Small 2019, 15, 1804885.

    Google Scholar 

  172. Kim, K. S.; Ji, Y. J.; Kim, K. H.; Choi, S.; Kang, D. H.; Heo, K.; Cho, S.; Yim, S.; Lee, S.; Park, J. H. et al. Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction. Nat. Commun. 2019, 10, 4701.

    Google Scholar 

  173. Liu, Y.; Gong, T. X.; Zheng, Y. N.; Wang, X. W.; Xu, J.; Ai, Q. Q.; Guo, J. X.; Huang, W.; Zhou, S. F.; Liu, Z. W. et al. Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry. Nanoscale 2018, 10, 20013–20019.

    CAS  Google Scholar 

  174. Ma, P.; Salamin, Y.; Baeuerle, B.; Josten, A.; Heni, W.; Emboras, A.; Leuthold, J. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 2019, 6, 154–161.

    CAS  Google Scholar 

  175. Guo, Q. S.; Yu, R. W.; Li, C.; Yuan, S. F.; Deng, B. C.; García de Abajo, F. J.; Xia, F. N. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater. 2018, 17, 986–992.

    CAS  Google Scholar 

  176. Hsu, A. L.; Herring, P. K.; Gabor, N. M.; Ha, S.; Shin, Y. C.; Song, Y.; Chin, M.; Dubey, M.; Chandrakasan, A. P.; Kong, J. et al. Graphene-based thermopile for thermal imaging applications. Nano Lett. 2015, 15, 7211–7216.

    CAS  Google Scholar 

  177. Liu, C. H.; Chang, Y. C.; Norris, T. B.; Zhong, Z. H. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 2014, 9, 273–278.

    CAS  Google Scholar 

  178. Song, J. C. W.; Rudner, M. S.; Marcus, C. M.; Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 2011, 11, 4688–4692.

    CAS  Google Scholar 

  179. Xu, X. D.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010, 10, 562–566.

    CAS  Google Scholar 

  180. Zhang, Y. W.; Zheng, H. M.; Wang, Q. Y.; Cong, C. X.; Hu, L. G.; Tian, P. F.; Liu, R.; Zhang, S. L.; Qiu, Z. J. Competing mechanisms for photocurrent induced at the monolayer-multilayer graphene junction. Small 2018, 14, 1800691.

    Google Scholar 

  181. Xia, F. N.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y. M.; Tsang, J.; Perebeinos, V.; Avouris, P. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 2009, 9, 1039–1044.

    CAS  Google Scholar 

  182. Ma, Q.; Lui, C. H.; Song, J. C. W.; Lin, Y. X.; Kong, J. F.; Cao, Y.; Dinh, T. H.; Nair, N. L.; Fang, W. J.; Watanabe, K. et al. Giant intrinsic photoresponse in pristine graphene. Nat. Nanotechnol. 2019, 14, 145–150.

    CAS  Google Scholar 

  183. Yin, J. B.; Peng, H. L. Asymmetry allows photocurrent in intrinsic graphene. Nat. Nanotechnol. 2019, 14, 105–106.

    CAS  Google Scholar 

  184. Yuan, S. F.; Yu, R. W.; Ma, C.; Deng, B. C.; Guo, Q. S.; Chen, X. L.; Li, C.; Chen, C.; Watanabe, K.; Taniguchi, T. et al. Room temperature graphene mid-infrared bolometer with a broad operational wavelength range. ACS Photonics 2020, 7, 1206–1215.

    CAS  Google Scholar 

  185. De Sanctis, A.; Amit, I.; Hepplestone, S. P.; Craciun, M. F.; Russo, S. Strain-engineered inverse charge-funnelling in layered semiconductors. Nat. Commun. 2018, 9, 1652.

    Google Scholar 

  186. Zhao, S. W.; Wu, J. C.; Jin, K.; Ding, H. Y.; Li, T. S.; Wu, C. Z.; Pan, N.; Wang, X. P. Highly polarized and fast photoresponse of black phosphorus-InSe vertical p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1802011.

    Google Scholar 

  187. Quereda, J.; San-Jose, P.; Parente, V.; Vaquero-Garzon, L.; Molina-Mendoza, A. J.; Agraït, N.; Rubio-Bollinger, G.; Guinea, F.; Roldán, R.; Castellanos-Gomez, A. Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 2016, 16, 2931–2937.

    CAS  Google Scholar 

  188. Guo, N.; Xiao, L.; Gong, F.; Luo, M.; Wang, F.; Jia, Y.; Chang, H. C.; Liu, J. K.; Li, Q.; Wu, Y. et al. Light-driven WSe2-ZnO junction field-effect transistors for high-performance photodetection. Adv. Sci. 2020, 7, 1901637.

    CAS  Google Scholar 

  189. Woessner, A.; Alonso-González, P.; Lundeberg, M. B.; Gao, Y. D.; Barrios-Vargas, J. E.; Navickaite, G.; Ma, Q.; Janner, D.; Watanabe, K.; Cummings, A. W. et al. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nat. Commun. 2016, 7, 10783.

    CAS  Google Scholar 

  190. Sunku, S. S.; McLeod, A. S.; Stauber, T.; Yoo, H.; Halbertal, D.; Ni, G. X.; Sternbach, A.; Jiang, B. Y.; Taniguchi, T.; Watanabe, K. et al. Nano-photocurrent mapping of local electronic structure in twisted bilayer graphene. Nano Lett. 2020, 20, 2958–2964.

    CAS  Google Scholar 

  191. Weng, Q. C.; Panchal, V.; Lin, K. T.; Sun, L. X.; Kajihara, Y.; Tzalenchuk, A.; Komiyama, S. Comparison of active and passive methods for the infrared scanning near-field microscopy. Appl. Phys. Lett. 2019, 114, 153101.

    Google Scholar 

  192. Lin, K. T.; Weng, Q.; Nema, H.; Kim, S.; Sugawara, K.; Otsuji, T.; Komiyama, S.; Kajihara, Y. Near-field nanoscopy of current-induced excess noise in graphene. In Proceedings of 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 2017, pp 1–2.

  193. Weng, Q. C.; Komiyama, S.; Yang, L.; An, Z. H.; Chen, P. P.; Biehs, S. A.; Kajihara, Y.; Lu, W. Imaging of nonlocal hot-electron energy dissipation via shot noise. Science 2018, 360, 775–778.

    CAS  Google Scholar 

  194. Lee, I. H.; Yoo, D.; Avouris, P.; Low, T.; Oh, S. H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 2019, 14, 313–319.

    CAS  Google Scholar 

  195. Cai, X. H.; Sushkov, A. B.; Jadidi, M. M.; Nyakiti, L. O.; Myers-Ward, R. L.; Gaskill, D. K.; Murphy, T. E.; Fuhrer, M. S.; Drew, H. D. Plasmon-enhanced terahertz photodetection in graphene. Nano Lett. 2015, 15, 4295–4302.

    CAS  Google Scholar 

  196. Fei, Z.; Ni, G. X.; Jiang, B. Y.; Fogler, M. M.; Basov, D. N. Nanoplasmonic phenomena at electronic boundaries in graphene. ACS Photonics 2017, 4, 2971–2977.

    CAS  Google Scholar 

  197. Woessner, A.; Lundeberg, M. B.; Gao, Y. D.; Principi, A.; Alonso-González, P.; Carrega, M.; Watanabe, K.; Taniguchi, T.; Vignale, G.; Polini, M. et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 2015, 14, 421–425.

    CAS  Google Scholar 

  198. Xu, Y. C.; Tucker, E.; Boreman, G.; Raschke, M. B.; Lail, B. A. Optical nanoantenna input impedance. ACS Photonics 2016, 3, 881–885.

    CAS  Google Scholar 

  199. Fei, Z.; Rodin, A. S.; Andreev, G. O.; Bao, W.; McLeod, A. S.; Wagner, M.; Zhang, L. M.; Zhao, Z.; Thiemens, M.; Dominguez, G. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012, 487, 82–85.

    CAS  Google Scholar 

  200. Zhang, K.; Yap, F. L.; Li, K.; Ng, C. T.; Li, L. J.; Loh, K. P. Large scale graphene/hexagonal boron nitride heterostructure for tunable plasmonics. Adv. Funct. Mater. 2014, 24, 731–738.

    CAS  Google Scholar 

  201. Dai, S.; Fei, Z.; Ma, Q.; Rodin, A. S.; Wagner, M.; McLeod, A. S.; Liu, M. K.; Gannett, W.; Regan, W.; Watanabe, K. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 2014, 343, 1125–1129.

    CAS  Google Scholar 

  202. Dai, S.; Ma, Q.; Liu, M. K.; Andersen, T.; Fei, Z.; Goldflam, M. D.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 2015, 10, 682–686.

    CAS  Google Scholar 

  203. Yang, J.; Mayyas, M.; Tang, J. B.; Ghasemian, M. B.; Yang, H. H.; Watanabe, K.; Taniguchi, T.; Ou, Q. D.; Li, L. H.; Bao, Q. L. et al. Boundary-induced auxiliary features in scattering-type near-field fourier transform infrared spectroscopy. ACS Nano 2020, 14, 1123–1132.

    CAS  Google Scholar 

  204. Ma, W. L.; Alonso-González, P.; Li, S. J.; Nikitin, A. Y.; Yuan, J.; Martín-Sánchez, J.; Taboada-Gutiérrez, J.; Amenabar, I.; Li, P. N.; Vélez, S. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 2018, 562, 557–562.

    CAS  Google Scholar 

  205. Hu, G. W.; Ou, Q. D.; Si, G. Y.; Wu, Y. J.; Wu, J.; Dai, Z. G.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q. L. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 2020, 582, 209–213.

    CAS  Google Scholar 

  206. Chaudhary, K.; Tamagnone, M.; Rezaee, M.; Bediako, D. K.; Ambrosio, A.; Kim, P.; Capasso, F. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci. Adv. 2019, 5, eaau7171.

    CAS  Google Scholar 

  207. Gong, C. H.; Chu, J. W.; Qian, S. F.; Yin, C. J.; Hu, X. Z.; Wang, H. B.; Wang, Y.; Ding, X.; Jiang, S. C.; Li, A. L. et al. Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gate-controlled deep-ultraviolet phototransistors. Adv. Mater. 2020, 32, 1908242.

    CAS  Google Scholar 

  208. Tan, C. L.; Amani, M.; Zhao, C. S.; Hettick, M.; Song, X. H.; Lien, D. H.; Li, H.; Yeh, M.; Shrestha, V. R.; Crozier, K. B. et al. Evaporated SexTe1−x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 2020, 32, 2001329.

    CAS  Google Scholar 

  209. Sun, J. C.; Wang, Y. Y.; Guo, S. Q.; Wan, B. S.; Dong, L. Q.; Gu, Y. D.; Song, C.; Pan, C. F.; Zhang, Q. H.; Gu, L. et al. Lateral 2D WSe2 p-n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics. Adv. Mater. 2020, 32, 1906499.

    CAS  Google Scholar 

  210. Lv, L.; Zhuge, F. W.; Xie, F. J.; Xiong, X. J.; Zhang, Q. F.; Zhang, N.; Huang, Y.; Zhai, T. Y. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun. 2019, 10, 3331.

    Google Scholar 

  211. Wu, G. J.; Wang, X. D.; Chen, Y.; Wu, S. Q.; Wu, B. M.; Jiang, Y. Y.; Shen, H.; Lin, T.; Liu, Q.; Wang, X. R. et al. MoTe2 p-n homojunctions defined by ferroelectric polarization. Adv. Mater. 2020, 32, 1907937.

    CAS  Google Scholar 

  212. Wang, X. D.; Shen, H.; Chen, Y.; Wu, G. J.; Wang, P.; Xia, H.; Lin, T.; Zhou, P.; Hu, W. D.; Meng, X. J. et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 µm. Adv. Sci. 2019, 6, 1901050.

  213. Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

    Google Scholar 

  214. Qi, T. L.; Gong, Y. P.; Li, A. L.; Ma, X. M.; Wang, P. P.; Huang, R.; Liu, C.; Sakidja, R.; Wu, J. Z.; Chen, R. et al. Interlayer transition in a VdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors. Adv. Funct. Mater. 2020, 30, 1905687.

    CAS  Google Scholar 

  215. Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 2018, 12, 7253–7263.

    CAS  Google Scholar 

  216. Tan, W. C.; Huang, L.; Ng, R. J.; Wang, L.; Hasan, D. M. N.; Duffin, T. J.; Kumar, K. S.; Nijhuis, C. A.; Lee, C. K.; Ang, K. W. A black phosphorus carbide infrared phototransistor. Adv. Mater. 2018, 30, 1705039.

    Google Scholar 

  217. Huang, L.; Dong, B. W.; Guo, X.; Chang, Y. H.; Chen, N.; Huang, X.; Liao, W. G.; Zhu, C. X.; Wang, H.; Lee, C. et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 2019, 13, 913–921.

    CAS  Google Scholar 

  218. Lukman, S.; Ding, L.; Xu, L.; Tao, Y.; Riis-Jensen, A. C.; Zhang, G.; Wu, Q. Y. S.; Yang, M.; Luo, S.; Hsu, C. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 2020, 15, 675–682.

    CAS  Google Scholar 

  219. Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

    Google Scholar 

  220. Yu, X. C.; Li, Y. Y.; Hu, X. N.; Zhang, D. L.; Tao, Y.; Liu, Z. X.; He, Y. M.; Haque, A.; Liu, Z.; Wu, T. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 2018, 9, 4299.

    Google Scholar 

  221. He, J. L.; Wang, P.; Li, Q.; Wang, F.; Gu, Y.; Shen, C.; Chen, L.; Martyniuk, P.; Rogalski, A.; Chen, X. S. et al. Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design. IEEE Trans. Electron Devices 2020, 67, 2001–2007.

    CAS  Google Scholar 

  222. Li, Q.; He, J. L.; Hu, W. D.; Chen, L.; Chen, X. S.; Lu, W. Influencing sources for dark current transport and avalanche mechanisms in planar and mesa HgCdTe p-i-n electron-avalanche photodiodes. IEEE Trans. Electron Devices 2018, 65, 572–576.

    CAS  Google Scholar 

  223. Miao, J. S.; Song, B.; Li, Q.; Cai, L.; Zhang, S. M.; Hu, W. D.; Dong, L. X.; Wang, C. Photothermal effect induced negative photoconductivity and high responsivity in flexible black phosphorus transistors. ACS Nano 2017, 11, 6048–6056.

    CAS  Google Scholar 

  224. Miao, J. S.; Xu, Z. H.; Li, Q.; Bowman, A.; Zhang, S. M.; Hu, W. D.; Zhou, Z. X.; Wang, C. Vertically stacked and self-encapsulated van der Waals heterojunction diodes using two-dimensional layered semiconductors. ACS Nano 2017, 11, 10472–10479.

    CAS  Google Scholar 

  225. Gramse, G.; Kölker, A.; Škereň, T.; Stock, T. J. Z.; Aeppli, G.; Kienberger, F.; Fuhrer, A.; Curson, N. J. Nanoscale imaging of mobile carriers and trapped charges in delta doped silicon p-n junctions. Nat. Electron. 2020, 3, 531–538.

    CAS  Google Scholar 

  226. Lin, K. T.; Nema, H.; Weng, Q. C.; Kim, S.; Sugawara, K.; Otsuji, T.; Komiyama, S.; Kajihara, Y. Nanoscale probing of thermally excited evanescent fields in an electrically biased graphene by near-field optical microscopy. Appl. Phys. Express 2020, 13, 096501.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31900748, 61905266, 61975224, 62004207, amd 62005303), and Fund of Shanghai Natural Science Foundation (Nos. 19YF1454600, 18ZR1445800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Wang or Weida Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, F., Wang, H., Wang, Z. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Res. 14, 1840–1862 (2021). https://doi.org/10.1007/s12274-020-3247-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3247-1

Keywords

Navigation