Skip to main content
Log in

Flocculation and magnetically-assisted sedimentation of size-sorted beidellite platelets mixed with maghemite nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, the flocculation and the subsequent decantation step of mixed suspensions of 10 nm-sized γ-Fe2O3 magnetic nanoparticles and 500 nm-sized beidellite clay platelets was investigated. This work may find application in the field of water treatment, specifically the flocculation processes with magnetically assisted sedimentation. After a short description of the preparation and characterization of the raw materials (nanoparticles and clays), the influence of several parameters (pH, concentrations of nanoparticles and clays etc.) on the amount of flocculated materials was examined, which gave information on the concentration ranges allowing a complete flocculation, together with a better understanding on the interactions between nanoparticles and clays responsible for flocculation. The optimal conditions for magnetically assisted settling were then determined by comparing for each sample sedimentation velocities under gravity and in the presence of a Nd-Fe-B magnet. Finally, the complex multiscale structure of the flocs in water was explored, through the measurement of several bulk properties (zeta-potential and volume measurements, laser granulometry), while the organization of the materials at a microscopic scale was investigated by cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bottero, J. Y.; Lartiges, B. Séparation liquide/solide par coagulation-floculation: Les coagulants-floculants, mécanismes d’agrégation, structure et densité des flocs. Sci. Géol. Bull. 1993, 46, 163–174.

    Google Scholar 

  2. Fundamental physical-chemical engineering processes applicable to water treatment. SUEZ’s degremont® water handbook [Online]. https://www.suezwaterhandbook.com/water-and-generalities/fundamental-physical-chemical-engineering-processes-applicable-to-water-treatment/sedimentation (accessed Feb 13, 2020).

  3. Urbain, O. M.; Stemen, W. R. Process for treating liquids. U.S. Patent 2232294, February 18, 1941.

  4. de Latour, C. Magnetic separation in water pollution control. IEEE Trans. Magnet. 1973, 9, 314–316.

    Article  CAS  Google Scholar 

  5. de Latour, C.; Kolm, H. Magnetic separation in water pollution control — II. IEEE Trans. Magn. 1975, 11, 1570–1572.

    Article  Google Scholar 

  6. Bolto, B. A.; Spurling, T. H. Water purification with magnetic particles. Environ. Monit. Assess. 1991, 19, 139–143.

    Article  CAS  Google Scholar 

  7. Ward, C. SIROFLOC — unique method of water treatment [Online]. https://csiropedia.csiro.au/sirofloc/ (accessed July 26, 2018).

  8. Yiacoumi, S.; Rountree, D. A.; Tsouris, C. Mechanism of particle flocculation by magnetic seeding. J. Colloid Interface Sci. 1996, 184, 477–488.

    Article  CAS  Google Scholar 

  9. Karapinar, N.; Hoffmann, E.; Hahn, H. H. Magnetite seeded precipitation of phosphate. Water Res. 2004, 38, 3059–3066.

    Article  CAS  Google Scholar 

  10. Cort, S. L. Magnetic separation and seeding to improve ballasted clarification of water. U.S. Patent 7820053, October 26, 2010.

  11. Cort, S. L. Magnetic ballast clarification designs and applications. U.S. Patent 20160221845A1, August 4, 2016.

  12. Lohwacharin, J.; Phetrak, A.; Oguma, K.; Takizawa, S. Flocculation performance of magnetic particles with high-turbidity surface water. Water Sci. Technol. Water Supply 2014, 14, 609–617.

    Article  CAS  Google Scholar 

  13. Tombácz, E.; Csanaky, C.; Illés, E. Polydisperse fractal aggregate formation in clay mineral and iron oxide suspensions, pH and ionic strength dependence. Colloid Polym. Sci. 2001, 279, 484–492.

    Article  Google Scholar 

  14. Cousin, F.; Cabuil, V.; Levitz, P. Magnetic colloidal particles as probes for the determination of the structure of laponite suspensions. Langmuir 2002, 18, 1466–1473.

    Article  CAS  Google Scholar 

  15. Ji, Y. Q.; Black, L.; Weidler, P. G.; Janek, M. Preparation of nanostructured materials by heterocoagulation-interaction of montmorillonite with synthetic hematite particles. Langmuir 2004, 20, 9796–9806.

    Article  CAS  Google Scholar 

  16. Tombácz, E.; Libor, Z.; Illés, E.; Majzik, A.; Klumpp, E. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Org. Geochem. 2004, 35, 257–267.

    Article  Google Scholar 

  17. Galindo-González, C.; de Vicente, J.; Ramos-Tejada, M. M.; López-López, M. T.; González-Caballero, F.; Durán, J. D. G. Preparation and sedimentation behavior in magnetic fields of magnetite-covered clay particles. Langmuir 2005, 21, 4410–4419.

    Article  Google Scholar 

  18. Szabó, T.; Bakandritsos, A.; Tzitzios, V.; Papp, S.; Korösi, L.; Galbács, G.; Musabekov, K.; Bolatova, D.; Petridis, D.; Dékány, I. Magnetic iron oxide/clay composites: Effect of the layer silicate support on the microstructure and phase formation of magnetic nanoparticles. Nanotechnology 2007, 18, 285602.

    Article  Google Scholar 

  19. Esteban-Cubillo, A.; Marco, J. F.; Moya, J. S.; Pecharromán, C. On the nature and location of nanoparticulate iron phases and their precursors synthetized within a sepiolite matrix. J. Phys. Chem. C 2008, 112, 2864–2871.

    Article  CAS  Google Scholar 

  20. Cousin, F.; Cabuil, V.; Grillo, I.; Levitz, P. Competition between entropy and electrostatic interactions in a binary colloidal mixture of spheres and platelets. Langmuir 2008, 24, 11422–11430.

    Article  CAS  Google Scholar 

  21. Orolínová, Z.; Mockovčiaková, A. Structural study of bentonite/iron oxide composites. Mater. Chem. Phys. 2009, 114, 956–961.

    Article  Google Scholar 

  22. de Paula, F. L. O.; da Silva, G. J.; Aquino, R.; Depeyrot, J.; Fossum, J. O.; Knudsen, K. D.; Helgesen, G.; Tourinho, F. A. Gravitational and magnetic separation in self-assembled clay-ferrofluid nanocomposites. Br. J. Phys. 2009, 39, 163–170.

    Google Scholar 

  23. Galindo-Gonzalez, C.; Feinberg, J. M.; Kasama, T.; Gontard, L. C.; Pósfai, M.; Kósa, I.; Duran, J. D. G.; Gil, J. E.; Harrison, R. J.; Dunin-Borkowski, R. E. Magnetic and microscopic characterization of magnetite nanoparticles adhered to clay surfaces. Am. Mineral. 2009, 94, 1120–1129.

    Article  CAS  Google Scholar 

  24. Bunnak, N.; Ummartyotin, S.; Laoratanakul, P.; Bhalla, A. S.; Manuspiya, H. Synthesis and characterization of magnetic porous clay heterostructure. J. Porous Mater. 2014, 21, 1–8.

    Article  CAS  Google Scholar 

  25. Liu, H. C.; Chen, W.; Liu, C.; Liu, Y.; Dong, C. L. Magnetic mesoporous clay adsorbent: Preparation, characterization and adsorption capacity for atrazine. Microp. Mesop. Mater. 2014, 194, 72–78.

    Article  CAS  Google Scholar 

  26. Marins, J. A.; Mija, A.; Pin, J. M.; Giulieri, F.; Soares, B. G.; Sbirrazzuoli, N.; Lançon, P.; Bossis, G. Anisotropic reinforcement of epoxy-based nanocomposites with aligned magnetite-sepiolite hybrid nanofiller. Composit. Sci. Technol. 2015, 112, 34–41.

    Article  CAS  Google Scholar 

  27. Barry, M. M.; Jung, Y.; Lee, J. K.; Phuoc, T. X.; Chyu, M. K. Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids. J. Pet. Sci. Eng. 2015, 127, 338–346.

    Article  CAS  Google Scholar 

  28. Middea, A.; Spinelli, L. S.; Junior, F. G. S.; Neumann, R.; da F.M. Gomes, O.; Fernandes, T. L. A. P.; de Lima, L. C.; Barthem, V. M. T. S.; de Carvalho, F. V. Synthesis and characterization of magnetic palygorskite nanoparticles and their application on methylene blue remotion from water. Appl. Surf. Sci. 2015, 346, 232–239.

    Article  CAS  Google Scholar 

  29. Bailey, L.; Lekkerkerker, H. N. W.; Maitland, G. C. Smectite clayinorganic nanoparticle mixed suspensions: Phase behaviour and rheology. Soft Matter 2015, 11, 222–236.

    Article  CAS  Google Scholar 

  30. Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247–1248.

    Article  Google Scholar 

  31. Paineau, E.; Antonova, K.; Baravian, C.; Bihannic, I.; Davidson, P.; Dozov, I.; Impéror-Clerc, M.; Levitz, P.; Madsen, A.; Meneau, F. et al. Liquid-crystalline nematic phase in aqueous suspensions of a disk-shaped natural beidellite clay. J. Phys. Chem. B 2009, 113, 15858–15869.

    Article  CAS  Google Scholar 

  32. Charlot, G. Les Méthodes de La Chimie Analytique; Masson et Cie: Paris, 1961.

    Google Scholar 

  33. Beaucage, G. Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Cryst. 1995, 28, 717–728.

    Article  CAS  Google Scholar 

  34. Bacri, J. C.; Perzynski, R.; Salin, D.; Cabuil, V.; Massart, R. Magnetic colloidal properties of ionic ferrofluids. J. Magn. Magn. Mater. 1986, 62, 36–46.

    Article  CAS  Google Scholar 

  35. Lucas, I. T.; Durand-Vidal, S.; Dubois, E.; Chevalet, J.; Turq, P. Surface charge density of maghemite nanoparticles: Role of electrostatics in the proton exchange. J. Phys. Chem. C 2007, 111, 18568–18576.

    Article  CAS  Google Scholar 

  36. Orsini, L.; Remy, J. C. Utilisation du chlorure de cobaltihexammine pour la détermination simultanée de la capacité d’échange et des bases échangeables des sols. Sci. Sol. 1976, 4, 269–275.

    Google Scholar 

  37. Paineau, E. N. Transitions de phases dans les argiles. Influence de la minéralogie et de la morphologie. Comportement sous écoulement et sous champs. Ph.D. Dissertation, Institut National Polytechnique de Lorraine, France, 2011.

    Google Scholar 

  38. Lagaly, G.; Ziesmer, S. Colloid chemistry of clay minerals: The coagulation of montmorillonite dispersions. Adv. Colloid Interface Sci. 2003, 100–102, 105–128.

    Article  Google Scholar 

  39. Michot, L. J.; Bihannic, I.; Thomas, F.; Lartiges, B. S.; Waldvogel, Y.; Caillet, C.; Thieme, J.; Funari, S. S.; Levitz, P. Coagulation of Na-montmorillonite by inorganic cations at neutral pH. A combined transmission X-ray microscopy, small angle and wide angle X-ray scattering study. Langmuir 2013, 29, 3500–3510.

    Article  CAS  Google Scholar 

  40. Michot, L. J.; Bihannic, I.; Porsch, K.; Maddi, S.; Baravian, C.; Mougel, J.; Levitz, P. Phase diagrams of Wyoming Na-montmorillonite clay. Influence of particle anisotropy. Langmuir 2004, 20, 10829–10837.

    Article  CAS  Google Scholar 

  41. Tadros, T. F. Solid/Liquid Dispersions; Academic Press: London, 1987.

    Google Scholar 

  42. Wilhelm, C.; Gazeau, F.; Bacri, J. C. Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur. Biophys. J. 2002, 31, 118–125.

    Article  CAS  Google Scholar 

  43. Berret, J. F.; Sandre, O.; Mauger, A. Size distribution of super-paramagnetic particles determined by magnetic sedimentation. Langmuir 2007, 23, 2993–2999.

    Article  CAS  Google Scholar 

  44. White, D. A.; Amornraksa, S. Batch sedimentation of magnetic flocs in a magnetic field. Chem. Eng. J. 2000, 79, 165–169.

    Article  CAS  Google Scholar 

  45. Turchiuli, C.; Fargues, C. Influence of structural properties of alum and ferric flocs on sludge dewaterability. Chem. Eng. J. 2004, 103, 123–131.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to kindly thank Delphine Talbot and Aude Michel for their technical support, and Cedric Boissiere for the fruitful discussions. We equally acknowledge the local staffs of the ID02 and BM26 lines of the European Scientific Radiation Facility (ESRF) in Grenoble.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Abramson.

Electronic Supplementary Material

12274_2020_2964_MOESM1_ESM.pdf

Flocculation and magnetically-assisted sedimentation of size-sorted beidellite platelets mixed with maghemite nanoparticles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Housni, S., Abramson, S., Guigner, JM. et al. Flocculation and magnetically-assisted sedimentation of size-sorted beidellite platelets mixed with maghemite nanoparticles. Nano Res. 13, 3001–3011 (2020). https://doi.org/10.1007/s12274-020-2964-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2964-9

Keywords

Navigation