Skip to main content
Log in

Low-cost, simple, and scalable self-assembly of DNA origami nanostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Despite demonstrating exciting potential for applications such as drug delivery and biosensing, the development of nanodevices for practical applications and broader use in research and education are still hindered by the time, effort, and cost associated with DNA origami fabrication. Simple and robust methods to perform and scale the DNA origami self-assembly process are critical to facilitate broader use and translation to industrial or clinical applications. We report a simple approach to fold DNA origami nanostructures that is fast, robust, and scalable. We demonstrate fabrication at scales approximately 100–1,500-fold higher than typical scales. We further demonstrate an approach we termed low-cost efficient annealing (LEAN) self-assembly involving initial heating at 65 °C for 10 min, then annealing at 51 °C for 2 h, followed by brief quenching at 4 °C that leads to effective assembly of a range of DNA origami structures tested. In contrast to other methods for scaling DNA origami assembly, this approach can be carried out using cheap and widely available equipment (e.g., hot plates, water baths, and laboratory burners) and uses standard recipes and materials so is readily applied to any existing or new DNA origami designs. We envision these methods can facilitate device development for commercial applications and facilitate broader use of DNA origami in research and education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Swarup Dey, Chunhai Fan, … Pengfei Zhan

References

  1. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

    Article  Google Scholar 

  2. Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 2009, 459, 414–418.

    Article  Google Scholar 

  3. Castro, C. E.; Kilchherr, F.; Kim, D. N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H. A primer to scaffolded DNA origami. Nat. Methods 2011, 8, 221–229.

    Article  Google Scholar 

  4. Ke, Y. G.; Castro, C.; Choi, J. H. Structural DNA nanotechnology: Artificial nanostructures for biomedical research. Annu. Rev. Biomed. Eng. 2018, 20, 375–401.

    Article  Google Scholar 

  5. Wang, P. F.; Meyer, T. A.; Pan, V.; Dutta, P. K.; Ke, Y. G. The beauty and utility of DNA origami. Chem 2017, 2, 359–382.

    Article  Google Scholar 

  6. Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.; Orponen, P.; Högberg, B. DNA rendering of polyhedral meshes at the nanoscale. Nature 2015, 523, 441–444.

    Article  Google Scholar 

  7. Matthies, M.; Agarwal, N. P.; Schmidt, T. L. Design and synthesis of triangulated DNA origami trusses. Nano Lett. 2016, 16, 2108–2113.

    Article  Google Scholar 

  8. Veneziano, R.; Ratanalert, S.; Zhang, K. M.; Zhang, F.; Yan, H.; Chiu, W.; Bathe, M. Designer nanoscale DNA assemblies programmed from the top down. Science 2016, 352, 1534.

    Article  Google Scholar 

  9. Zhao, Y. X.; Shaw, A.; Zeng, X. H.; Benson, E.; Nyström, A. M.; Högberg, B. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 2012, 6, 8684–8691.

    Article  Google Scholar 

  10. Jiang, Q.; Song, C.; Nangreave, J.; Liu, X. W.; Lin, L.; Qiu, D. L.; Wang, Z. G.; Zou, G. Z.; Liang, X. J.; Yan, H. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 2012, 134, 13396–133403.

    Article  Google Scholar 

  11. Zhang, Q.; Jiang, Q.; Li, N.; Dai, L. R.; Liu, Q.; Song, L. L.; Wang, J. Y.; Li, Y. Q.; Tian, J.; Ding, B. Q. et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 2014, 8, 6633–6643.

    Article  Google Scholar 

  12. Halley, P. D.; Lucas, C. R.; McWilliams, E. M.; Webber, M. J.; Patton, R. A.; Kural, C.; Lucas, D. M.; Byrd, J. C.; Castro, C. E. Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model. Small 2016, 12, 308–320.

    Article  Google Scholar 

  13. Banerjee, A.; Bhatia, D.; Saminathan, A.; Chakraborty, S.; Kar, S.; Krishnan, Y. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem., Int. Ed. 2013, 52, 6854–6857.

    Article  Google Scholar 

  14. Douglas, S. M.; Bachelet, I.; Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012, 335, 831–834.

    Article  Google Scholar 

  15. Kuzuya, A.; Sakai, Y.; Yamazaki, T.; Xu, Y.; Komiyama, M. Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat. Commun. 2011, 2, 449.

    Article  Google Scholar 

  16. Pfitzner, E.; Wachauf, C.; Kilchherr, F.; Pelz, B.; Shih, W. M.; Rief, M.; Dietz, H. Rigid DNA beams for high-resolution single-molecule mechanics. Angew. Chem., Int. Ed. 2013, 52, 7766–7771.

    Article  Google Scholar 

  17. Czogalla, A.; Kauert, D. J.; Seidel, R.; Schwille, P.; Petrov, E. P. DNA origami nanoneedles on freestanding lipid membranes as a tool to observe isotropic-nematic transition in two dimensions. Nano Lett. 2015, 15, 649–655.

    Article  Google Scholar 

  18. Le, J. V.; Luo, Y.; Darcy, M. A.; Lucas, C. R.; Goodwin, M. F.; Poirier, M. G.; Castro, C. E. Probing nucleosome stability with a DNA origami nanocaliper. ACS Nano 2016, 10, 7073–7084.

    Article  Google Scholar 

  19. Hudoba, M. W.; Luo, Y.; Zacharias, A.; Poirier, M. G.; Castro, C. E. Dynamic DNA origami device for measuring compressive depletion forces. ACS Nano 2017, 11, 6566–6573.

    Article  Google Scholar 

  20. Funke, J. J.; Ketterer, P.; Lieleg, C.; Schunter, S.; Korber, P.; Dietz, H. Uncovering the forces between nucleosomes using DNA origami. Sci. Adv. 2016, 2, e1600974.

    Article  Google Scholar 

  21. Voigt, N. V.; Tørring, T.; Rotaru, A.; Jacobsen, M. F.; Ravnsbaek, J. B.; Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.; Besenbacher, F. et al. Single-molecule chemical reactions on DNA origami. Nat. Nanotechnol. 2010, 5, 200–203.

    Article  Google Scholar 

  22. Linko, V.; Eerikäinen, M.; Kostiainen, M. A. A modular DNA origami-based enzyme cascade nanoreactor. Chem. Commun. 2015, 51, 5351–5354.

    Article  Google Scholar 

  23. Praetorius, F.; Kick, B.; Behler, K. L.; Honemann, M. N.; Weuster-Botz, D.; Dietz, H. Biotechnological mass production of DNA origami. Nature 2017, 552, 84–87.

    Article  Google Scholar 

  24. Li, S. P.; Jiang, Q.; Liu, S. L.; Zhang, Y. L.; Tian, Y. H.; Song, C.; Wang, J.; Zou, Y. G.; Anderson, G. J.; Han, J. Y. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258–264.

    Article  Google Scholar 

  25. Ponnuswamy, N.; Bastings, M. M. C.; Nathwani, B.; Ryu, J. H.; Chou, L. Y. T.; Vinther, M.; Li, W. A.; Anastassacos, F. M.; Mooney, D. J.; Shih, W. M. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 2017, 8, 15654.

    Article  Google Scholar 

  26. Jiang, D. W.; Ge, Z. L.; Im, H. J.; England, C. G.; Ni, D. L.; Hou, J. J.; Zhang, L. H.; Kutyreff, C. J.; Yan, Y. J.; Liu, Y. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2018, 2, 865–877.

    Article  Google Scholar 

  27. Sobczak, J. P. J.; Martin, T. G.; Gerling, T.; Dietz, H. Rapid folding of DNA into nanoscale shapes at constant temperature. Science 2012, 338, 1458–1461.

    Article  Google Scholar 

  28. Wagenbauer, K. F.; Engelhardt, F. A. S.; Stahl, E.; Hechtl, V. K.; Stömmer, P.; Seebacher, F.; Meregalli, L.; Ketterer, P.; Gerling, T.; Dietz, H. How we make DNA origami. Chembiochem 2017, 18, 1873–1885.

    Article  Google Scholar 

  29. Yin, P.; Hariadi, R. F.; Sahu, S.; Choi, H. M. T.; Park, S. H.; Labean, T. H.; Reif, J. H. Programming DNA tube circumferences. Science 2008, 321, 824–826.

    Article  Google Scholar 

  30. Kuzyk, A.; Laitinen, K. T.; Törmä, P. DNA origami as a nanoscale template for protein assembly. Nanotechnology 2009, 20, 235305.

    Article  Google Scholar 

  31. Akbari, E.; Mollica, M. Y.; Lucas, C. R.; Bushman, S. M.; Patton, R. A.; Shahhosseini, M.; Song, J. W.; Castro, C. E. Engineering cell surface function with DNA origami. Adv. Mater. 2017, 29, 1703632.

    Article  Google Scholar 

  32. Marras, A. E.; Zhou, L. F.; Su, H. J.; Castro, C. E. Programmable motion of DNA origami mechanisms. Proc. Natl. Acad. Sci. USA 2015, 112, 713–718.

    Article  Google Scholar 

  33. Lei, D. S.; Marras, A. E.; Liu, J. F.; Huang, C. M.; Zhou, L. F.; Castro, C. E.; Su, H. J.; Ren, G. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography. Nat. Commun. 2018, 9, 592.

    Article  Google Scholar 

  34. Ke, Y. G.; Douglas, S. M.; Liu, M. H.; Sharma, J.; Cheng, A. C.; Leung, A.; Liu, Y.; Shih, W. M.; Yan, H. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 2009, 131, 15903–15908.

    Article  Google Scholar 

  35. Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.; Yan, H. DNA gridiron nanostructures based on four-arm junctions. Science 2013, 339, 1412–1415.

    Article  Google Scholar 

  36. Nafisi, P. M.; Aksel, T.; Douglas, S. M. Construction of a novel phagemid to produce custom DNA origami scaffolds. Synth. Biol. 2018, 3, ysy015.

    Article  Google Scholar 

  37. Marchi, A. N.; Saaem, I.; Vogen, B. N.; Brown, S.; LaBean, T. H. Toward larger DNA origami. Nano Lett. 2014, 14, 5740–5747.

    Article  Google Scholar 

  38. Said, H.; Schüller, V. J.; Eber, F. J.; Wege, C.; Liedl, T.; Richert, C. M1.3-A small scaffold for DNA origami. Nanoscale 2013, 5, 284–290.

    Article  Google Scholar 

  39. Veneziano, R.; Shepherd, T. R.; Ratanalert, S.; Bellou, L.; Tao, C. Q.; Bathe, M. In vitro synthesis of gene-length single-stranded DNA. Sci. Rep. 2018, 8, 6548.

    Article  Google Scholar 

  40. Cui, Y.; Chen, R. P.; Kai, M. X.; Wang, Y. Q.; Mi, Y. L.; Wei, B. Versatile DNA origami nanostructures in simplified and modular designing framework. ACS Nano 2017, 11, 8199–8206.

    Article  Google Scholar 

  41. Kumar, A.; Liang, Z. C. Chemical nanoprinting: A novel method for fabricating DNA microchips. Nucleic Acids Res. 2001, 29, e2.

    Article  Google Scholar 

  42. Ma, S. Y.; Tang, N.; Tian, J. D. DNA synthesis, assembly and applications in synthetic biology. Curr. Opin. Chem. Biol. 2012, 16, 260–267.

    Article  Google Scholar 

  43. Marchi, A. N.; Saaem, I.; Tian, J. D.; LaBean, T. H. One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold. ACS Nano 2013, 7, 903–910.

    Article  Google Scholar 

  44. Quan, J. Y.; Saaem, I.; Tang, N.; Ma, S. Y.; Negre, N.; Gong, H.; White, K. P.; Tian, J. D. Parallel on-chip gene synthesis and application to optimization of protein expression. Nat. Biotechnol. 2011, 29, 449–452.

    Article  Google Scholar 

  45. Ducani, C.; Kaul, C.; Moche, M.; Shih, W. M.; Högberg, B. Enzymatic production of ‘monoclonal stoichiometric’ single-stranded DNA oligonucleotides. Nat. Methods 2013, 10, 647–652.

    Article  Google Scholar 

  46. Linko, V.; Kostiainen, M. A. Automated design of DNA origami. Nat. Biotechnol. 2016, 34, 826–827.

    Article  Google Scholar 

  47. Lin, C. X.; Perrault, S. D.; Kwak, M.; Graf, F.; Shih, W. M. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 2013, 41, e40.

    Article  Google Scholar 

  48. Shaw, A.; Benson, E.; Högberg, B. Purification of functionalized DNA origami nanostructures. ACS Nano 2015, 9, 4968–4975.

    Article  Google Scholar 

  49. Stahl, E.; Martin, T. G.; Praetorius, F.; Dietz, H. Facile and scalable preparation of pure and dense DNA origami solutions. Angew. Chem., Int. Ed. 2014, 53, 12735–12740.

    Article  Google Scholar 

  50. Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 2009, 37, 5001–5006.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation (Award No. 1351159 to CEC) and the National Institute of Health (Award No. R01HL141941 to CEC and R35 CA197734 to JCB), and in part by D. Warren Brown Foundation, Four Winds Foundation, and the Harry T. Mangurian Jr Foundation. The authors also thank the Campus Microscopy and Imaging Facility and the NanoSystems Lab at The Ohio State University for imaging support and members of the Castro Lab, especially Dr. Chris Lucas, Josh Johnson, Jenny Le, and Molly Mollica for their feedback and suggestions for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Castro.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halley, P.D., Patton, R.A., Chowdhury, A. et al. Low-cost, simple, and scalable self-assembly of DNA origami nanostructures. Nano Res. 12, 1207–1215 (2019). https://doi.org/10.1007/s12274-019-2384-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2384-x

Keywords

Navigation