Skip to main content
Log in

Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the development of wearable energy devices, polypyrrole (PPy) is considered as a promising electrode material owing to its high capacitance and good mechanical flexibility. Herein, we report a PPy-based hybrid structure consisting of vertical PPy nanotube arrays and carbon nano-onions (CNOs) grown on textile for wearable supercapacitors. In this hybrid nanostructure, the vertical PPy nanotubes provide straight and superhighways for electron and ion transport, boosting the energy storage; while the CNOs mainly act as a conductivity retainer for the underlayered PPy film during stretching. A facile template-degrading method is developed for the large-area growth of the PPy-based hybrid nanostructures on the textile through one-step polymerization process. The fabricated stretchable supercapacitor exhibits superior energy storage capacitance with the specific capacitance of 64 F·g−1. Also, it presents the high capacitance retention of 99% at a strain of 50% after 500 stretching cycles. Furthermore, we demonstrate that the textile-based stretchable supercapacitor device can provide a stable energy storage performance in different wearable situations for practical applications. The use of the PPy-based hybrid nanostructures as the supercapacitor electrode offers a novel structure design and a promising opportunity for wearable power supply in real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    Article  Google Scholar 

  2. Wang, H.; Li, F. S.; Zhu, B. W.; Guo, L.; Yang, Y.; Hao, R.; Wang, H.; Liu, Y. Q.; Wang, W.; Guo, X. T. et al. Flexible integrated electrical cables based on biocomposites for synchronous energy transmission and storage. Adv. Funct. Mater. 2016, 26, 3472–3479.

    Article  Google Scholar 

  3. Kim, R. H.; Bae, M. H.; Kim, D. G.; Cheng, H. Y.; Kim, B. H.; Kim, D. H.; Li, M.; Wu, J.; Du, F.; Kim, H. S. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 2011, 11, 3881–3886.

    Article  Google Scholar 

  4. Zhao, J. X.; Li, C. W.; Zhang, Q. C.; Zhang, J.; Wang, X. N.; Sun, J.; Wang, J. J.; Xie, J. X.; Lin, Z. Y.; Li, Z. et al. Hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays supported on graphene fibers as highperformance electrodes for flexible asymmetric supercapacitors. Nano Res. 2018, 11, 1775–1786.

    Article  Google Scholar 

  5. Wang, C. D.; Liu, D. B.; Chen, S. M.; Shang, Y. A.; Haleem, Y. A.; Wu, C. Q.; Xu, W. Y.; Fang, Q.; Habib, M.; Cao, J. et al. All-carbon ultrafast supercapacitor by integrating multidimensional nanocarbons. Small 2016, 12, 5684–5691.

    Article  Google Scholar 

  6. Kim, B. C.; Hong, J. Y.; Wallace, G. G.; Park, H. S. Recent progress in flexible electrochemical capacitors: Electrode materials, device configuration, and functions. Adv. Energy Mater. 2015, 5, 1500959.

    Article  Google Scholar 

  7. Jiao, X.; Zhang, C. G.; Yuan, Z. H. Facile and large-area preparation of polypyrrole film for low-haze transparent supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 41299–41311.

    Article  Google Scholar 

  8. Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. 2018, 11, 4313–4322.

    Article  Google Scholar 

  9. Huang, Y.; Tao, J. Y.; Meng, W. J.; Zhu, M. S.; Huang, Y.; Fu, Y. Q.; Gao, Y. H.; Zhi, C. Y. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525.

    Article  Google Scholar 

  10. Zhu, J.; Tang, S. C.; Wu, J.; Shi, X. L.; Zhu, B. G.; Meng, X. K. Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4-NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv. Energy Mater. 2017, 7, 1601234.

    Article  Google Scholar 

  11. Bao, L. H.; Li, X. D. Towards textile energy storage from cotton T-shirts. Adv. Mater. 2012, 24, 3246–3252.

    Article  Google Scholar 

  12. Bao, Z. A.; Chen, X. D. Flexible and stretchable devices. Adv. Mater. 2016, 28, 4177–4179.

    Article  Google Scholar 

  13. Xue, Q.; Sun, J. F.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Wang, Y. K.; Li, N.; Zhang, H. Y.; Zhi, C. Y. Recent progress on flexible and wearable supercapacitors. Small 2017, 13, 1701827.

    Article  Google Scholar 

  14. Yang, Y.; Wang, H.; Hao, R.; Guo, L. Transition-metal-free biomoleculebased flexible asymmetric supercapacitors. Small 2016, 12, 4683–4689.

    Article  Google Scholar 

  15. Yue, B. B.; Wang, C. Y.; Ding, X.; Wallace, G. G. Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim. Acta 2012, 68, 18–24.

    Article  Google Scholar 

  16. Chen, T.; Xue, Y. H.; Roy, A. K.; Dai, L. M. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 2014, 8, 1039–1046.

    Article  Google Scholar 

  17. Wang, X. L.; Hu, H.; Shen, Y. D.; Zhou, X. C.; Zheng, Z. J. Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms. Adv. Mater. 2011, 23, 3090–3094.

    Article  Google Scholar 

  18. Wang, S. Y.; Pei, B.; Zhao, X. S.; Dryfe, R. A. W. Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2013, 2, 530–536.

    Article  Google Scholar 

  19. Chen, B. L.; Jiang, Y. Z.; Tang, X. H.; Pan, Y. Y.; Hu, S. Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces 2017, 9, 28433–28440.

    Article  Google Scholar 

  20. Zhang, N.; Luan, P. S.; Zhou, W. Y.; Zhang, Q.; Cai, L.; Zhang, X.; Zhou, W. B.; Fan, Q. X.; Yang, F.; Zhao, D. et al. Highly stretchable pseudocapacitors based on buckled reticulate hybrid electrodes. Nano Res. 2014, 7, 1680–1690.

    Article  Google Scholar 

  21. Zhang, C. G.; Peng, Z. W.; Lin, J.; Zhu, Y.; Ruan, G. D.; Hwang, C. C.; Lu, W.; Hauge, R. H.; Tour, J. M. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors. ACS Nano 2013, 7, 5151–5159.

    Article  Google Scholar 

  22. Yamada, T.; Namai, T.; Hata, K.; Futaba, D. N.; Mizuno, K.; Fan, J.; Yudasaka, M.; Yumura, M.; Iijima, S. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat. Nanotechnol. 2006, 1, 131–136.

    Article  Google Scholar 

  23. Wang, K.; Wu, H. P.; Meng, Y. N.; Wei, Z. X. Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014, 10, 14–31.

    Article  Google Scholar 

  24. Ni, J. F.; Li, L. Self-supported 3D array electrodes for sodium microbatteries. Adv. Funct. Mater. 2018, 28, 1704880.

    Article  Google Scholar 

  25. Zhang, C. G.; Bets, K.; Lee, S. S.; Sun, Z. Z.; Mirri, F.; Colvin, V. L.; Yakobson, B. I.; Tour, J. M.; Hauge, R. H. Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes. ACS Nano 2012, 6, 6023–6032.

    Article  Google Scholar 

  26. Zhu, Y.; Li, L.; Zhang, C. G.; Casillas, G.; Sun, Z. Z.; Yan, Z.; Ruan, G. D.; Peng, Z. W.; Raji, A. R. O.; Kittrell, C. et al. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 2012, 3, 1225.

    Article  Google Scholar 

  27. Zhang, C. G.; Li, J. J.; Zeng, X. S.; Yuan, Z. H.; Zhao, N. Q. Graphene quantum dots derived from hollow carbon nano-onions. Nano Res. 2018, 11, 174–184.

    Article  Google Scholar 

  28. Zeiger, M.; Jäckel, N.; Mochalin, V. N.; Presser, V. Review: Carbon onions for electrochemical energy storage. J. Mater. Chem. A 2016, 4, 3172–3196.

    Article  Google Scholar 

  29. Weingarth, D.; Zeiger, M.; Jäckel, N.; Aslan, M.; Feng, G.; Presser, V. Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors. Adv. Energy Mater. 2014, 4, 1400316.

    Article  Google Scholar 

  30. Zhang, C. G.; Li, J. J.; Liu, E. Z.; He, C. N.; Shi, C. S.; Du, X. W.; Hauge, R. H.; Zhao, N. Q. Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 2012, 50, 3513–3521.

    Article  Google Scholar 

  31. Yuan, L. Y.; Yao, B.; Hu, B.; Huo, K. F.; Chen, W.; Zhou, J. Polypyrrolecoated paper for flexible solid-state energy storage. Energy Environ. Sci. 2013, 6, 470–476.

    Article  Google Scholar 

  32. Mykhailiv, O.; Imierska, M.; Petelczyc, M.; Echegoyen, L.; Plonska-Brzezinska, M. E. Chemical versus electrochemical synthesis of carbon nano-onion/polypyrrole composites for supercapacitor electrodes. Chem.—Eur. J. 2015, 21, 5783–5793.

    Article  Google Scholar 

  33. Jeong, H. T.; Kim, Y. R.; Kim, B. C. Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes. J. Alloys Compd. 2017, 727, 721–727.

    Article  Google Scholar 

  34. Yang, X. M.; Zhu, Z. X.; Dai, T. Y.; Lu, Y. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Comm. 2005, 26, 1736–1740.

    Article  Google Scholar 

  35. Chen, J. C.; Wang, Y. M.; Cao, J. Y.; Liu, Y.; Zhou, Y.; Ouyang, J. H.; Jia, D. H. Facile co-electrodeposition method for high-performance supercapacitor based on reduced graphene oxide/polypyrrole composite film. ACS Appl. Mater. Interfaces 2017, 9, 19831–19842.

    Article  Google Scholar 

  36. Yang, C.; Zhang, L. L.; Hu, N. T.; Yang, Z.; Wei, H.; Wang, Y. Y.; Zhang, Y. F. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers. Appl. Surf. Sci. 2016, 387, 666–673.

    Article  Google Scholar 

  37. Yang, J.; Wang, H.; Yang, Y.; Wu, J. P.; Hu, P. F.; Guo, L. Pseudocapacitivedye- molecule-based high-performance flexible supercapacitors. Nanoscale 2017, 9, 9879–9885.

    Article  Google Scholar 

  38. Zhang, D.; Dong, Q. Q.; Wang, X.; Yan, W.; Deng, W.; Shi, L. Y. Preparation of a three-dimensional ordered macroporous carbon nanotube/polypyrrole composite for supercapacitors and diffusion modeling. J. Phys. Chem. C 2013, 117, 20446–20455.

    Article  Google Scholar 

  39. Song, L. F.; Zou, Y. J.; Zhang, H. T.; Xiang, C. L.; Chu, H. L.; Qiu, S. J.; Yan, E. H.; Xu, F.; Sun, L. X. High performance supercapacitor based on polypyrrole/melamine formaldehyde resin derived carbon material. Int. J. Electrochem. Sci. 2017, 12, 1014–1024.

    Article  Google Scholar 

  40. Morozan, A.; Jégou, P.; Campidelli, S.; Palacin, S.; Jousselme, B. Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction. Chem. Commun. 2012, 48, 4627–4629.

    Article  Google Scholar 

  41. Li, H. H.; Song, J.; Wang, L. L.; Feng, X. M.; Liu, R. Q.; Zeng, W. J.; Huang, Z. D.; Ma, Y. W.; Wang, L. H. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. Nanoscale 2017, 9, 193–200.

    Article  Google Scholar 

  42. Sultana, I.; Rahman, M. M.; Wang, J. Z.; Wang, C. Y.; Wallace, G. G.; Liu, H. K. All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochim. Acta. 2012, 83, 209–215.

    Article  Google Scholar 

  43. Islam, N.; Warzywoda, J.; Fan, Z. Y. Edge-oriented graphene on carbon nanofiber for high-frequency supercapacitors. Nano-Micro Lett. 2018, 10, 9.

    Article  Google Scholar 

  44. Taberna, P. L.; Simon, P.; Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292–A300.

    Article  Google Scholar 

  45. Song, Y.; Liu, T. Y.; Xu, X. X.; Feng, D. Y.; Li, Y.; Liu, X. X. Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv. Funct. Mater. 2015, 25, 4626–4632.

    Article  Google Scholar 

  46. Kovalenko, I.; Bucknall, D. G.; Yushin, G. Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors. Adv. Funct. Mater. 2010, 20, 3979–3986.

    Article  Google Scholar 

  47. Huang, J. Y.; Wang, K.; Wei, Z. X. Conducting polymer nanowire arrays with enhanced electrochemical performance. J. Mater. Chem. 2010, 20, 1117–1121.

    Article  Google Scholar 

  48. Huang, T. Q.; Cai, S. Y.; Chen, H.; Jiang, Y. Q.; Wang, S. Y.; Gao, C. Continuous fabrication of the graphene-confined polypyrrole film for cycling stable supercapacitors. J. Mater. Chem. A 2017, 5, 8255–8260.

    Article  Google Scholar 

  49. Zhang, C. G.; Ma, K.; Zhao, N. Q.; Yuan, Z. H. A core–shell strategy for improving alloy catalyst activity for continual growth of hollow carbon onions. Cryst. Growth Des. 2018, 18, 7470–7480.

    Article  Google Scholar 

  50. Noked, M.; Liu, C. Y.; Hu, J. K.; Gregorczyk, K.; Rubloff, G. W.; Lee, S. B. Electrochemical thin layers in nanostructures for energy storage. Acc. Chem. Res. 2016, 49, 2336–2346.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the finance support by the National Natural Science Foundation of China (No. 51702233), the Natural Science Foundation of Tianjin City (No. 16JCYBJC41000) and support by Tianjin Key Subject for Materials Physics and Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenguang Zhang or Zhihao Yuan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, C., Jiao, X. et al. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Res. 12, 1129–1137 (2019). https://doi.org/10.1007/s12274-019-2360-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2360-5

Keywords

Navigation