Skip to main content
Log in

Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Utilizing vacuum-tuned-atmosphere induced dip coating method, we achieve the cross-dimensional macroscopic diverse self-assemblies by using one building block with one chemical functionality. Coordinated modulating the vacuum degree, colloid concentration and evaporation atmosphere, Au@Ag core/shell NCs can controllably assemble into diverse multi-dimensional superstructures. Under 0.08 MPa, we obtained the two-dimensional (2D) stepped superstructures with continuously tunable step width. In addition, we generated a series of tailorable nanoscale-roughened 2D Au@Ag NCs superstructures at 0.04 MPa, which exhibited the label-free ultrasensitive SERS detection for the different mutants of IAPP8-37 proteins. Under 0.01 MPa, we obtained the cross-dimensional tailorable Au@Ag NCs assemblies from random to macroscale 2D and three-dimensional (3D) densest superstructures by adjusting the capping ligand-environmental molecule interactions. This is a flexible method to generate as-prepared Au@Ag core/shell NCs into well-defined macroscopic diverse superstructures and to promote the exploitation into biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

    Article  Google Scholar 

  2. Ross, M. B.; Ku, J. C.; Vaccarezza, V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol. 2015, 10, 453–458.

    Article  Google Scholar 

  3. Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. D. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 2012, 11, 131–137.

    Article  Google Scholar 

  4. Zhu, Z. N.; Meng, H. F.; Liu, W. J.; Liu, X. F.; Gong, J. X.; Qiu, X. H.; Jiang, L.; Wang, D.; Tang, Z. Y. Superstructures and SERS properties of gold nanocrystals with different shapes. Angew. Chem., Int. Ed. 2011, 50, 1593–1596.

    Article  Google Scholar 

  5. Nagaoka, Y.; Tan, R.; Li, R. P.; Zhu, H.; Eggert, D.; Wu, Y. A.; Liu, Y. Z.; Wang, Z. W.; Chen, O. Superstructures generated from truncated tetrahedral quantum dots. Nature 2018, 561, 378–382.

    Article  Google Scholar 

  6. Hu, S.; Liu, H. L.; Wang, P. P.; Wang, W. Inorganic nanostructures with sizes down to 1 nm: A macromolecule analogue. J. Am. Chem. Soc. 2013, 135, 11115–11124.

    Article  Google Scholar 

  7. Dong, A. G.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474–477.

    Article  Google Scholar 

  8. Bodnarchuk, M. I.; Kovalenko, M. V.; Heiss, W.; Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: Temperature as the structure-directing factor. J. Am. Chem. Soc. 2010, 132, 11967–11977.

    Article  Google Scholar 

  9. Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H. L.; Cheah, K. W.; Chen, J. Y.; Wang, J. F. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem., Int. Ed. 2008, 47, 9685–9690.

    Article  Google Scholar 

  10. Chiu, C. Y.; Chen, C. K.; Chang, C. W.; Jeng, U. S.; Tan, C. S.; Yang, C. W.; Chen, L. J.; Yen, T. J.; Huang, M. H. Surfactant-directed fabrication of supercrystals from the assembly of polyhedral Au-Pd core-shell nanocrystals and their electrical and optical properties. J. Am. Chem. Soc. 2015, 137, 2265–2275.

    Article  Google Scholar 

  11. Huang, L.; Zheng, J. J.; Huang, L. L.; Liu, J.; Ji, M. W.; Yao, Y.; Xu, M.; Liu, J. J.; Zhang, J. T.; Li, Y. D. Controlled synthesis and flexible selfassembly of monodisperse Au@semiconductor core/shell hetero-nanocrystals into diverse superstructures. Chem. Mater. 2017, 29, 2355–2363.

    Article  Google Scholar 

  12. Zheng, J. J.; Dai, B. S.; Liu, J.; Liu, J. L.; Ji, M. W.; Liu, J. J.; Zhou, Y. M.; Xu, M.; Zhang, J. T. Hierarchical self-assembly of Cu7Te5 nanorods into superstructures with enhanced SERS performance. ACS Appl. Mater. Interfaces 2016, 8, 35426–35434.

    Article  Google Scholar 

  13. Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016–4022.

    Article  Google Scholar 

  14. Li, W. J.; Zhong, X. H. Capping ligand-induced self-assembly for quantum dot sensitized solar cells. J. Phys. Chem. Lett. 2015, 6, 796–806.

    Article  Google Scholar 

  15. Pinchetti, V.; Di, Q. M.; Lorenzon, M.; Camellini, A.; Fasoli, M.; Zavelani-Rossi, M.; Meinardi, F.; Zhang, J. T.; Crooker, S. A.; Brovelli, S. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. Nat. Nanotechnol. 2018, 13, 145–151.

    Article  Google Scholar 

  16. Zhao, Q.; Zhang, J. T.; Zhu, H. S. A facile strategy to prepare monodisperse nanocrystals with initiative assembly into superlattice. Prog Nat Sci-Mater. 2013, 23, 588–592.

    Article  Google Scholar 

  17. Zhang, Y.; Wang, M. S.; Zhu, E. B.; Zheng, Y. B.; Huang, Y.; Huang X. Q. Seedless growth of palladium nanocrystals with tunable structures: From tetrahedra to nanosheets. Nano Lett. 2015, 15, 7519–7525.

    Article  Google Scholar 

  18. Bu, L. Z.; Feng, Y. G.; Yao, J. L.; Guo, S. J.; Guo, J.; Huang, X. Q. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Res. 2016, 9, 2811–2821.

    Article  Google Scholar 

  19. Qian, H. M.; Zhao, Q.; Dai, B. S.; Guo, L. J.; Zhang, J. X.; Liu, J. J.; Zhang, J. T.; Zhu, H. S. Oriented attachment of nanoparticles to form micrometer-sized nanosheets/nanobelts by topotactic reaction on rigid/flexible substrates with improved electronic properties. NPG Asia Mater. 2015, 7, e152.

    Article  Google Scholar 

  20. Yang, Y. J.; Lee, Y. H.; Phang, I. Y.; Jiang, R. B.; Sim, H. Y. F.; Wang, J. F.; Ling, X. Y. A chemical approach to break the planar configuration of Ag nanocubes into tunable two-dimensional metasurfaces. Nano Lett. 2016, 16, 3872–3878.

    Article  Google Scholar 

  21. Yang, Y. J.; Lee, Y. H.; Lay, C. L.; Ling, X. Y. Tuning molecular-level polymer conformations enables dynamic control over both the interfacial behaviors of Ag nanocubes and their assembled metacrystals. Chem. Mater. 2017, 29, 6137–6144.

    Article  Google Scholar 

  22. Lewandowski, W.; Fruhnert, M.; Mieczkowski, J.; Rockstuhl, C.; Górecka, E. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat. Commun. 2015, 6, 6590.

    Article  Google Scholar 

  23. Wei, J. J.; Schaeffer, N.; Pileni, M. P. Solvent-mediated crystallization of nanocrystal 3D assemblies of silver nanocrystals: Unexpected superlattice ripening. Chem. Mater. 2016, 28, 293–302.

    Article  Google Scholar 

  24. Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

    Article  Google Scholar 

  25. Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbó-Argibay, E.; Pazos-Pérez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A. et al. Gold nanorods 3D-supercrystals as surface enhanced raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 2011, 108, 8157–8161.

    Article  Google Scholar 

  26. Lane, L. A.; Qian, X. M.; Nie, S. M. SERS nanoparticles in medicine: From label-free detection to spectroscopic tagging. Chem. Rev. 2015, 115, 10489–10529.

    Article  Google Scholar 

  27. Kleinman, S. L.; Sharma, B.; Blaber, M. G.; Henry, A. I.; Valley, N.; Freeman, R. G.; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. Structure enhancement factor relationships in single gold nanoantennas by surfaceenhanced Raman excitation spectroscopy. J. Am. Chem. Soc. 2013, 135, 301–308.

    Article  Google Scholar 

  28. Li, J. F.; Anema, J. R.; Wandlowskic, T.; Tian, Z. Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev. 2015, 44, 8399–8409.

    Article  Google Scholar 

  29. Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property. J. Am. Chem. Soc. 2015, 137, 10460–10463.

    Article  Google Scholar 

  30. Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

    Article  Google Scholar 

  31. Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 2010, 132, 268–274.

    Article  Google Scholar 

  32. Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.

    Article  Google Scholar 

  33. Li, C. Y.; Fan, F. R.; Yin, B. S.; Chen, L.; Ganguly, T.; Tian, Z. Q. Au+-cetyltrimethylammonium bromide solution: A novel precursor for seedmediated growth of gold nanoparticles in aqueous solution. Nano Res. 2013, 6, 29–37.

    Article  Google Scholar 

  34. Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201–7206.

    Article  Google Scholar 

  35. Tu, G. P.; Deogratias, N.; Xu, M.; Li, X. W.; Liu, J. J.; Jiang, L.; Yang, Y. L.; Zhang, J. T. Sharp-featured Au@Ag core/shell nanocuboid synthesis and the label-free ultrasensitive SERS detection of protein single-point mutations. Mater. Chem. Front. 2018, 2, 1720–1724.

    Article  Google Scholar 

  36. Gaulding, E. A.; Diroll, B. T.; Goodwin, E. D.; Vrtis, Z. J.; Kagan, C. R.; Murray, C. B. Deposition of wafer-scale single-component and binary nanocrystal superlattice thin films via dip-coating. Adv. Mater. 2015, 27, 2846–2851.

    Article  Google Scholar 

  37. Boniello, G.; Blanc, C.; Fedorenko, D.; Medfai, M.; Mbarek, N. B.; In, M.; Gross, M.; Stocco, A.; Nobili, M. Brownian diffusion of a partially wetted colloid. Nat. Mater. 2015, 14, 908–911.

    Article  Google Scholar 

  38. Yang, Y. L.; Wang, C. Hierarchical construction of self-assembled lowdimensional molecular architectures observed by using scanning tunneling microscopy. Chem. Soc. Rev. 2009, 38, 2576–2589.

    Article  Google Scholar 

  39. Bao, W.; Melli, M.; Caselli, N.; Riboli, F.; Wiersma, D. S.; Staffaroni, M.; Choo, H.; Ogletree, D. F.; Aloni, S.; Bokor, J. et al. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 2012, 338, 1317–1321.

    Article  Google Scholar 

  40. Pavan Kumar, G. V.; Ashok Reddy, B. A.; Arif, M.; Kundu, T. K.; Narayana, C. Surface-enhanced Raman scattering studies of human transcriptional coactivator p300. J. Phys. Chem. B 2006, 110, 16787–16792.

    Article  Google Scholar 

  41. Podstawka-Proniewicz, E.; Piergies, N.; Skołuba, D.; Kafarski, P.; Kim, Y.; Proniewicz, L. M. Vibrational characterization of L-leucine phosphonate analogues: FT-IR, FT-Raman, and SERS spectroscopy studies and DFT calculations. J. Phys. Chem. A 2011, 115, 11067–11078.

    Article  Google Scholar 

  42. Brulé, T.; Yockell-Lelièvre, H.; Bouhélier, A.; Margueritat, J.; Markey, L.; Leray, A.; Dereux, A.; Finot, E. Sorting of enhanced reference Raman spectra of a single amino acid molecule. J. Phys. Chem. C 2014, 118, 17975–17982.

    Article  Google Scholar 

  43. Choi, I.; Huh, Y. S.; Erickson, D. Ultra-sensitive, label-free probing of the conformational characteristics of amyloid beta aggregates with a SERS active nanofluidic device. Microfluid. Nanofluid. 2012, 12, 663–669.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872030, 51631001, 21643003, 51702016, and 51501010) and Fundamental Research Funds for the Central Universities and Beijing Institute of Technology Research Fund Program for Young Scholars and ZDKT18-01 fund from State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology). We acknowledge critical and quantity of testing work supported by Beijing Zhongkebaice Technology Service Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiatao Zhang.

Electronic supplementary material

12274_2019_2325_MOESM1_ESM.pdf

Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Tu, G., Ji, M. et al. Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Res. 12, 1375–1379 (2019). https://doi.org/10.1007/s12274-019-2325-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2325-8

Keywords

Navigation