Skip to main content
Log in

High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Octahedral PtNi/C catalysts have demonstrated superior catalytic performance in oxygen reduction reaction (ORR) over commercial Pt/C with rotating disk electrode (RDE). However, it is not trivial to translate such promising results to real-world membrane-electrode assembly (MEA). In this work, we have synthesized octahedral PtNi/C catalysts using poly(diallyldimethylammonium chloride) (PDDA) as a capping agent and investigated their performance from RDE to MEA. In RDE, mass activity and specific activity of the optimized octahedral PtNi/C catalyst for oxygen reduction reaction (ORR) are nearly 19 and 28 times high of the state-of-the-art commercial Pt/C, respectively. At MEA level, the octahedral PtNi/C catalyst exhibits excellent power generation performance and durability paired with commercial Pt/C anode. Its cell voltage at 1,000 mA·cm−2 reaches 0.712 V, and maximum power density is 881.6 mW·cm−2 and its performance attenuation is also less, around 11.8% and 7% under galvanostatic condition of 1,000 mA·cm−2 for 100 h. Such results are investiaged by thermodynamic analysis and fundametal performance modeling, which indicate the single cell performance can be further improved by reducing the size of PtNi/C catalyst agglomerates. Such encouraging results have demonstrated the feasibility to convey the superior performance of octahedral PtNi/C from RDE to MEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colón-Mercado, H. R.; Popov, B. N. Stability of platinum based alloy cathode catalysts in PEM fuel cells. J. Power Sources 2006, 155, 253–263.

    Article  Google Scholar 

  2. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  Google Scholar 

  3. Larminie, J.; Dicks, A. Fuel Cell Systems Explained; 2nd ed. London, UK: Wiley, 2003.

    Book  Google Scholar 

  4. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

    Article  Google Scholar 

  5. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1443.

    Article  Google Scholar 

  6. Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  Google Scholar 

  7. Shao, Y. Y.; Cheng, Y. W.; Duan, W. T.; Wang, W.; Lin, Y. H.; Wang, Y.; Liu, J. Nanostructured electrocatalysts for PEM fuel cells and redox flow batteries: A selected review. ACS Catal. 2015, 5, 7288–7298.

    Article  Google Scholar 

  8. Wang, J.; Li, B.; Yersak, T.; Yang, D. J.; Xiao, Q. F.; Zhang, J. L.; Zhang, C. M. Recent advances in Pt-based octahedral nanocrystals as high performance fuel cell catalysts. J. Mater. Chem. A 2016, 4, 11559–11581.

    Article  Google Scholar 

  9. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  Google Scholar 

  10. Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.

    Article  Google Scholar 

  11. Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

    Article  Google Scholar 

  12. Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Zhu, E. B.; Li, M. F.; Duan, X. F.; Huang, Y. A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy Environ. Sci. 2014, 7, 2957–2962.

    Article  Google Scholar 

  13. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, M. Y. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  Google Scholar 

  14. Chu, Y. Y.; Wang, Z. B.; Dai, Z.; Gu, D. M.; Yin, G. P. Synthesis of truncated-octahedral Pt-Pd nanocrystals supported on carbon black as a highly efficient catalyst for methanol oxidation. Fuel Cells 2014, 14, 49–55.

    Article  Google Scholar 

  15. Dai, L.; Zhao, Y. X.; Chi, Q.; Liu, H. F.; Li, J. L.; Huang, T. Morphological control and evolution of octahedral and truncated trisoctahedral Pt-Au alloy nanocrystals under microwave irradiation. Nanoscale 2014, 6, 9944–9950.

    Article  Google Scholar 

  16. Zhang, C. L.; Hwang, S. Y.; Peng, Z. M. Size-dependent oxygen reduction property of octahedral Pt-Ni nanoparticle electrocatalysts. J. Mater. Chem. A 2014, 2, 19778–19787.

    Article  Google Scholar 

  17. Zhang, C. L.; Sandorf, W.; Peng, Z. M. Octahedral Pt2CuNi uniform alloy nanoparticle catalyst with high activity and promising stability for oxygen reduction reaction. ACS Catal. 2015, 5, 2296–2300.

    Article  Google Scholar 

  18. Prabhuram, J.; Wang, X.; Hui, C. L.; Hsing, I. M. Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications. J. Phys. Chem. B 2003, 107, 11057–11064.

    Article  Google Scholar 

  19. Zeng, J.; Zheng, Y. Q.; Rycenga, M.; Tao, J.; Li, Z. Y.; Zhang, Q.; Zhu, Y. M.; Xia, Y. N. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 2010, 132, 8552–8553.

    Article  Google Scholar 

  20. Lim, B.; Xiong, Y. J.; Xia, Y. N. A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew. Chem., Int. Ed. 2007, 119, 9439–9442.

    Article  Google Scholar 

  21. Sakamoto, R.; Omichi, K.; Furuta, T.; Ichikawa, M. Effect of high oxygen reduction reaction activity of octahedral PtNi nanoparticle electrocatalysts on proton exchange membrane fuel cell performance. J. Power Sources 2014, 269, 117–123.

    Article  Google Scholar 

  22. Gu, W.; Baker, D. R.; Liu, Y.; Gasteiger, H. A. Proton Exchange Membrane Fuel Cell (PEMFC) Down-the-channel Performance Model. In Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability. Vielstich, W.; Gasteiger, H. A.; Yokokawa, H., Eds.; John Wiley & Sons: Chichester, 2009; pp 631–657.

    Chapter  Google Scholar 

  23. Weber, A. Z.; Borup, R. L.; Darling, R. M.; Das, P. K.; Dursch, T. J.; Gu, W. B.; Harvey, D.; Kusoglu, A.; Litster, S.; Mench, M. M. et al. A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J. Electrochem. Soc. 2014, 161, F1254–F1299.

    Article  Google Scholar 

  24. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data; Minnesota: Perkin-Elmer Corporation, 1992.

    Google Scholar 

  25. Corcoran, C. J.; Tavassol, H.; Rigsby, M. A.; Bagus, P. S.; Wieckowski, A. Application of XPS to study electrocatalysts for fuel cells. J. Power Sources 2010, 195, 7856–7879.

    Article  Google Scholar 

  26. Zhu, S. Y.; Zheng, J. S.; Huang, J.; Dai, N. N.; Li, P.; Zheng, J. P. Fabrication of three-dimensional buckypaper catalyst layer with Pt nanoparticles supported on polyelectrolyte functionalized carbon nanotubes for proton exchange membrane fuel cells. J. Power Sources 2018, 393, 19–31.

    Article  Google Scholar 

  27. Lin, G. Y.; Trung. V. N. Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. J. Electrochem. Soc. 2005, 152, A1942–A1948.

    Article  Google Scholar 

  28. Williams, M. V.; Begg, E.; Bonville, L.; Kunz, H. R.; Fenton, J. M. Characterization of gas diffusion layers for PEMFC. J. Electrochem. Soc. 2004, 151, A1173–A1180.

    Article  Google Scholar 

  29. Khandelwal, M.; Mench, M. M. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. J. Power Sources 2006, 161, 1106–1115.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the National Natural Science Foundation of China (No. 21676204) and the Program of Ministry of Science & Technology of China (No. 2018YFB0106503) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiangfeng Xiao or Cunman Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, J., Gao, X. et al. High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly. Nano Res. 12, 281–287 (2019). https://doi.org/10.1007/s12274-018-2211-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2211-9

Keywords

Navigation