Skip to main content
Log in

Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a promising candidate for next generation energy storage devices, lithium sulfur (Li-S) batteries still confront rapid capacity degradation and low rate capability. Herein, we report a well-architected porous nitrogen-doped carbon/MnO coaxial nanotubes (MnO@PNC) as an efficient sulfur host material. The host shows excellent electron conductivity, sufficient ion transport channels and strong adsorption capability for the polysulfides, resulting from the abundant nitrogen-doped sites and pores as well as MnO in the carbon shell of MnO@PNC. The MnO@PNC-S composite electrode with a sulfur content of 75 wt.% deliveries a specific capacity of 802 mAh·g–1 at a high rate of 5.0 C and outstanding cycling stability with a capacity retention of 82% after 520 cycles at 1.0 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  2. Li, Z.; Wu, H. B.; Lou, X. W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ. Sci. 2016, 9, 3061–3070.

    Article  Google Scholar 

  3. Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886–12890.

    Article  Google Scholar 

  4. Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

    Article  Google Scholar 

  5. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    Article  Google Scholar 

  6. Chen, J. Z.; Han, K. S.; Henderson, W. A.; Lau, K. C.; Vijayakumar, M.; Dzwiniel, T.; Pan, H. L.; Curtiss, L. A.; Xiao, J.; Mueller, K. T. et al. Restricting the solubility of polysulfides in Li-S batteries via electrolyte salt selection. Adv. Energy Mater. 2016, 6, 1600160.

    Article  Google Scholar 

  7. Xu, N.; Qian, T.; Liu, X. J.; Liu, J.; Chen, Y.; Yan, C. L. Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano Lett. 2017, 17, 538–543.

    Article  Google Scholar 

  8. Mi, K.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 1571–1579.

    Article  Google Scholar 

  9. Lee, J. S.; Kim, W.; Jang, J.; Manthiram, A. Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1601943.

    Article  Google Scholar 

  10. Yang, X. F.; Yan, N.; Zhou, W.; Zhang, H. Z.; Li, X. F.; Zhang, H. M. Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal–organic framework for high performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 15314–15323.

    Article  Google Scholar 

  11. Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C.-Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery. Nano Res. 2016, 9, 240–248.

    Article  Google Scholar 

  12. Liu, X.; Huang, J.-Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 2017, 29, 1601759.

    Article  Google Scholar 

  13. Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun. 2015, 6, 8850.

    Article  Google Scholar 

  14. Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.

    Article  Google Scholar 

  15. Zhou, W. D.; Wang, C. M.; Zhang, Q. L.; Abruña, H. D.; He, Y.; Wang, J. W.; Mao, S. X.; Xiao, X. C. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.

    Article  Google Scholar 

  16. Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@ cellulose for advanced lithium-sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

    Article  Google Scholar 

  17. Guo, J. L.; Du, X. Y.; Zhang, X. L.; Zhang, F. X.; Liu, J. P. Facile formation of a solid electrolyte interface as a smart blocking layer for high-stability sulfur cathode. Adv. Mater. 2017, 29, 1700273.

    Article  Google Scholar 

  18. Song, J. X.; Yu, Z. X.; Gordin, M. L.; Wang, D. H. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett. 2016, 16, 864–870.

    Article  Google Scholar 

  19. Cao, J.; Chen, C.; Zhao, Q.; Zhang, N.; Lu, Q. Q.; Wang, X. Y.; Niu, Z. Q.; Chen, J. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv. Mater. 2016, 28, 9629–9636.

    Article  Google Scholar 

  20. Lin, C.; Niu, C. J.; Xu, X.; Li, K.; Cai, Z. Y.; Zhang, Y. L.; Wang, X. P.; Qu, L. B.; Xu, Y. X.; Mai, L. Q. A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li-S cathodes. Phys. Chem. Chem. Phys. 2016, 18, 22146–22153.

    Article  Google Scholar 

  21. Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

    Article  Google Scholar 

  22. Yu, M. P.; Ma, J. S.; Song, H. Q.; Wang, A. J.; Tian, F. Y.; Wang, Y. S.; Qiu, H.; Wang, R. M. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries. Energy Environ. Sci. 2016, 9, 1495–1503.

    Article  Google Scholar 

  23. An, T. H.; Deng, D. R.; Lei, M.; Wu, Q.-H.; Tian, Z. W.; Zheng, M. S.; Dong, Q. F. MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li/S batteries. J. Mater. Chem. A 2016, 4, 12858–12864.

    Article  Google Scholar 

  24. Lei, T. Y.; Xie, Y. M.; Wang, X. F.; Miao, S. Y.; Xiong, J.; Yan, C. L. TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries. Small 2017, 13, 1701013.

    Article  Google Scholar 

  25. Zhang, J.; Shi, Y.; Ding, Y.; Zhang, W. K.; Yu, G. H. In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium-sulfur battery. Nano Lett. 2016, 16, 7276–7281.

    Article  Google Scholar 

  26. Guo, D. Y.; Chen, X. A.; Wei, H. F.; Liu, M. L.; Ding, F.; Yang, Z.; Yang, K. Q.; Wang, S.; Xu, X. J.; Huang, S. M. Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium–sulfur batteries. J. Mater. Chem. A 2017, 5, 6245–6256.

    Article  Google Scholar 

  27. Jeong, Y. C.; Lee, K.; Kim, T.; Kim, J. H.; Park, J.; Cho, Y. S.; Yang, S. J.; Park, C. R. Partially unzipped carbon nanotubes for high-rate and stable lithium–sulfur batteries. J. Mater. Chem. A 2016, 4, 819–826.

    Article  Google Scholar 

  28. Qian, X. Y.; Jin, L. N.; Zhao, D.; Yang, X. L.; Wang, S. W.; Shen, X. Q.; Rao, D. W.; Yao, S. S.; Zhou, Y. Y.; Xi, X. M. Ketjen black-MnO composite coated separator for high performance rechargeable lithium-sulfur battery. Electrochim. Acta 2016, 192, 346–356.

    Article  Google Scholar 

  29. Guo, J. L.; Zhang, X. L.; Du, X. Y.; Zhang, F. X. A Mn3O4 nano-wall array based binder-free cathode for high performance lithium–sulfur batteries. J. Mater. Chem. A 2017, 5, 6447–6454.

    Article  Google Scholar 

  30. Wang, C.; Su, K.; Wan, W.; Guo, H.; Zhou, H. H.; Chen, J. T.; Zhang, X. X.; Huang, Y. H. High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 5018–5023.

    Article  Google Scholar 

  31. Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H.-M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

    Article  Google Scholar 

  32. Strubel, P.; Thieme, S.; Biemelt, T.; Helmer, A.; Oschatz, M.; Brückner, J.; Althues, H.; Kaskel, S. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithiumsulfur battery. Adv. Funct. Mater. 2015, 25, 287–297.

    Article  Google Scholar 

  33. Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.

    Article  Google Scholar 

  34. Ma, Z. L.; Tao, L.; Liu, D. D.; Li, Z.; Zhang, Y. Q.; Liu, Z. J.; Liu, H. W.; Chen, R.; Huo, J.; Wang, S. Y. Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium–sulfur batteries. J. Mater. Chem. A 2017, 5, 9412–9417.

    Article  Google Scholar 

  35. Tan, Y. B.; Zheng, Z. H.; Huang, S. T.; Wang, Y. Z.; Cui, Z. H.; Liu, J. J.; Guo, X. X. Immobilization of sulfur by constructing three-dimensional nitrogen rich carbons for long life lithium–sulfur batteries. J. Mater. Chem. A 2017, 5, 8360–8366.

    Article  Google Scholar 

  36. Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. S. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. ACS Nano 2014, 8, 5208–5215.

    Article  Google Scholar 

  37. Zhao, M. Q.; Liu, X. F.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Zhu, W. C.; Wei, F. Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li-S batteries. ACS Nano 2012, 6, 10759–10769.

    Article  Google Scholar 

  38. Zheng, Z. M.; Guo, H. C.; Pei, F.; Zhang, X.; Chen, X. Y.; Fang, X. L.; Wang, T. H.; Zheng, N. F. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries. Adv. Funct. Mater. 2016, 26, 8952–8959.

    Article  Google Scholar 

  39. Wang, Q.; Wang, Z. B.; Li, C.; Gu, D. M. High sulfur content microporous carbon coated sulfur composites synthesized via in situ oxidation of metal sulfide for high-performance Li/S batteries. J. Mater. Chem. A 2017, 5, 6052–6059.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fund for Distinguished Young Scholars (No. 51425204), the National Natural Science Foundation of China (Nos. 51521001 and 51702247), the National Key Research and Development Program of China (No. 2016YFA0202603), the Programme of Introducing Talents of Discipline to Universities (No. B17034), and the Fundamental Research Funds for the Central Universities (WUT: 2016III001, 2017III009, 2017III005, 2017III030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Xu or Liqiang Mai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Qu, L., Li, J. et al. Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Res. 12, 205–210 (2019). https://doi.org/10.1007/s12274-018-2203-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2203-9

Keywords

Navigation