Skip to main content
Log in

Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocathode with superior catalytic activity, long-term stability, and fast mass/electron transfer is highly desirable but challenging for dye-sensitized solar cell (DSC). Herein, the ZIF-67 grown on carbon cloth is successfully transformed into CoSe2 embedded in N-doped carbon nanocage (CoSe2/N-C) via a growth-carbonization-selenization process. The carbon cloth supported CoSe2/N-C, as photocathode of DSC, demonstrates a good long-term stability and high photovoltaic efficiency (8.40%), outperforming Pt. The good efficiency can be attributed to the high catalytic activity of CoSe2, fast mass transfer of porous 3D structure, and good electron transport derived from the intimate contact between CoSe2 and highly conductive carbon cloth. The high stability would be ascribed to N-doped carbon coating that perfectly prevents CoSe2 from decomposition. This work will pave the way to develop highly efficient and stable Pt-free photocathode for DSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

    Article  Google Scholar 

  2. Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dyesensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.

    Article  Google Scholar 

  3. Wu, J. H.; Lan, Z.; Lin, J. M.; Huang, M. L.; Huang, Y. F.; Fan, L. Q.; Luo, G. G.; Lin, Y.; Xie, Y. M.; Wei, Y. L. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975–6023.

    Article  Google Scholar 

  4. Lu, J. F.; Chang, Y. C.; Cheng, H. Y.; Wu, H. P.; Cheng, Y. B.; Wang, M. K.; Diau, E. W. G. Molecular engineering of organic dyes with a hole-extending donor tail for efficient all-solid-state dye-sensitized solar cells. ChemSusChem 2015, 8, 2529–2536.

    Article  Google Scholar 

  5. Cheng, Y. B.; Pascoe, A.; Huang, F. Z.; Peng, Y. Print flexible solar cells. Nature 2016, 539, 488–489.

    Article  Google Scholar 

  6. Cui, X. D.; Xie, Z. Q.; Wang, Y. Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic frameworks for dye-sensitized solar cells. Nanoscale 2016, 8, 11984–11992.

    Article  Google Scholar 

  7. Liu, R. Y.; Liu, Y. Q.; Zou, H. Y.; Song, T.; Sun, B. Q. Integrated solar capacitors for energy conversion and storage. Nano Res. 2017, 10, 1545–1559.

    Article  Google Scholar 

  8. Gong, F.; Wang, H.; Xu, X.; Zhou, G.; Wang, Z. S. In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 2012, 134, 10953–10958.

    Article  Google Scholar 

  9. Duan, Y. Y.; Tang, Q. W.; Liu, J.; He, B. L.; Yu, L. M. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Angew. Chem., Int. Ed. 2014, 53, 14569–14574.

    Article  Google Scholar 

  10. Yun, S. N.; Lund, P. D.; Hinsch, A. Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ. Sci. 2015, 8, 3495–3514.

    Article  Google Scholar 

  11. Xue, Y. H.; Liu, J.; Chen, H.; Wang, R. G.; Li, D. Q.; Qu, J.; Dai, L. M. Nitrogen-doped graphene foams as metal-free counter electrodes in highperformance dye-sensitized solar cells. Angew. Chem., Int. Ed. 2012, 51, 12124–12127.

    Article  Google Scholar 

  12. Tang, Q. W.; Zhang, H. H.; Meng, Y. Y.; He, B. L.; Yu, L. M. Dissolution engineering of platinum alloy counter electrodes in dye-sensitized solar cells. Angew. Chem., Int. Ed. 2015, 54, 11448–11452.

    Article  Google Scholar 

  13. Cui, X. J.; Xiao, J. P.; Wu, Y. H.; Du, P. P.; Si, R.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Zhang, W. H.; Deng, D. H. et al. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dyesensitized solar cells. Angew. Chem., Int. Ed. 2016, 55, 6708–6712.

    Article  Google Scholar 

  14. Zhang, M. M.; Zai, J. T.; Liu, J.; Chen, M.; Wang, Z. R.; Li, G.; Qian, X. F.; Qian, L. W.; Yu, X. B. A hierarchical CoFeS2/reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Dalton Trans. 2017, 46, 9511–9516.

    Article  Google Scholar 

  15. Yi, L. X.; Liu, Y. Y.; Yang, N. L.; Tang, Z. Y.; Zhao, H. J.; Ma, G. H.; Su, Z. G.; Wang, D. One dimensional CuInS2-ZnS heterostructured nanomaterials as low-cost and high-performance counter electrodes of dye-sensitized solar cells. Energy Environ. Sci. 2013, 6, 835–840.

    Article  Google Scholar 

  16. Zhou, H. W.; Shi, Y. T.; Dong, Q. S.; Wang, Y. X.; Zhu, C.; Wang, L.; Wang, N.; Wei, Y.; Tao, S. Y.; Ma, T. L. Interlaced W18O49 nanofibers as a superior catalyst for the counter electrode of highly efficient dye-sensitized solar cells. J. Mater. Chem. A. 2014, 2, 4347–4354.

    Article  Google Scholar 

  17. Li, X.; Pan, K.; Qu, Y.; Wang, G. F. One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells. Nano Res. 2018, 11, 1322–1330.

    Article  Google Scholar 

  18. Ni, B.; Ouyang, C.; Xu, X. B.; Zhuang, J.; Wang, X. Modifying commercial carbon with trace amounts of ZIF to prepare derivatives with superior ORR activities. Adv. Mater. 2017, 29, 1701354.

    Article  Google Scholar 

  19. Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889–10893.

    Article  Google Scholar 

  20. Yang, J.; He, D. S.; Chen, W. X.; Zhu, W.; Zhang, H.; Ren, S.; Wang, X.; Yang, Q. H.; Wu, Y. E.; Li, Y. D. Bimetallic Ru-Co clusters derived from a confined alloying process within zeolite-imidazolate frameworks for efficient NH3 decomposition and synthesis. ACS Appl. Mater. Interfaces 2017, 9, 39450–39455.

    Article  Google Scholar 

  21. Yin, X.; Guo, Y. J.; Xue, Z. S.; Xu, P.; He, M.; Liu, B. Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer. Nano Res. 2015, 8, 1997–2003.

    Article  Google Scholar 

  22. Xue, Z. S.; Zhang, W.; Yin, X.; Cheng, Y. M.; Wang, L.; Liu, B. Enhanced conversion efficiency of flexible dye-sensitized solar cells by optimization of the nanoparticle size with an electrophoretic deposition technique. RSC Adv. 2012, 2, 7074–7080.

    Article  Google Scholar 

  23. Xu, Z. Z.; Yin, X.; Guo, Y. J.; Pu, Y.; He, M. Ru-doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance. J. Mater. Chem. C 2018, 6, 4746–4752.

    Article  Google Scholar 

  24. Dai, X. Y.; Chen, Z.; Yao, T.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Wei, S. Q. et al. Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 2017, 53, 11568–11571.

    Article  Google Scholar 

  25. Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 130, 1962–1966.

    Article  Google Scholar 

  26. Pan, Y.; Sun, K. A.; Liu, S. J.; Cheong, W. C.; Chen, Z.; Wang, Y.; Liu, Y. Q.; Wang, D. S.; Peng, Q.; Chen, C. et al. Core–shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

    Article  Google Scholar 

  27. Li, X. Y.; Jiang, Q. Q.; Dou, S.; Deng, L. B.; Huo, J.; Wang, S. Y. ZIF-67- derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalyst. J. Mater. Chem. A. 2016, 4, 15836–15840.

    Article  Google Scholar 

  28. Song, J. H.; Zhu, C. Z.; Xu, B. Z.; Fu, S. F.; Engelhard, M. H.; Ye, R. F.; Du, D.; Beckman, S. P.; Lin, Y. H. Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1601555.

    Article  Google Scholar 

  29. Zhang, H. X.; Yang, B.; Wu, X. L.; Li, Z. J.; Lei, L. C.; Zhang, X. W. Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2015, 7, 1772–1779.

    Article  Google Scholar 

  30. Zhou, W. J.; Lu, J.; Zhou, K.; Yang, L. J.; Ke, Y. T.; Tang, Z. H.; Chen, S. W. CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 2016, 28, 143–150.

    Article  Google Scholar 

  31. Ekspong, J.; Sharifi, T.; Shchukarev, A.; Klechikov, A.; Wågberg, T.; Gracia-Espino, E. Stabilizing active edge sites in semicrystalline molybdenum sulfide by anchorage on nitrogen-doped carbon nanotubes for hydrogen evolution reaction. Adv. Funct. Mater. 2016, 26, 6766–6776.

    Article  Google Scholar 

  32. Liu, K. L.; Wang, F. M.; Xu, K.; Shifa, T. A.; Cheng, Z. Z.; Zhan, X. Y.; He, J. CoS2xSe2(1−x) nanowire array: An efficient ternary electrocatalyst for the hydrogen evolution reaction. Nanoscale 2016, 8, 4699–4704.

    Article  Google Scholar 

  33. Chen, T.; Li, S. Z.; Wen, J.; Gui, P. B.; Fang, G. J. Metal organic framework template derived porous CoSe2 nanosheet arrays for energy conversion and storage. ACS. Appl. Mater. Interfaces 2017, 9, 35927–35935.

    Article  Google Scholar 

  34. Qu, K. G.; Zheng, Y.; Jiao, Y.; Zhang, X. X.; Dai, S.; Qiao, S. Z. Polydopamineinspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1602068.

    Article  Google Scholar 

  35. Lai, Q. X.; Zhao, Y. X.; Liang, Y. Y.; He, J. P.; Chen, J. H. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction. Adv. Funct. Mater. 2016, 26, 8334–8344.

    Article  Google Scholar 

  36. Ye, L.; Chai, G. L.; Wen, Z. H. Zn-MOF-74 derived N-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1606190.

    Article  Google Scholar 

  37. Yin, X.; Wu, F.; Fu, N. Q.; Han, J.; Chen, D. L.; Xu, P.; He, M.; Lin, Y. Facile synthesis of poly(3,4-ethylenedioxythiophene) film via solid-state polymerization as high-performance Pt-free counter electrodes for plastic dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2013, 5, 8423–8429.

    Article  Google Scholar 

  38. Dong, F. Y.; Guo, Y. J.; Xu, P.; Yin, X.; Li, Y. G.; He, M. Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells. Sci. China-Mater. 2017, 60, 295–303.

    Article  Google Scholar 

  39. Liu, Z.; Sun, F.; Gu, L.; Chen, G.; Shang, T. T.; Liu, J.; Le, Z. Y.; Li, X. Y.; Wu, H. B.; Lu, Y. F. Post iron decoration of mesoporous nitrogen-doped carbon spheres for efficient electrochemical oxygen reduction. Adv. Energy Mater. 2017, 7, 1701154.

    Article  Google Scholar 

  40. Chen, T. Y.; Huang, Y. J.; Li, C. T.; Kung, C. W.; Vittal, R.; Ho, K. C. Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy 2017, 32, 19–27.

    Article  Google Scholar 

  41. Wang, Y. C.; Wang, D. Y.; Jiang, Y. T.; Chen, H. A.; Chen, C. C.; Ho, K. C.; Chou, H. L.; Chen, C. W. FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2013, 52, 6694–6698.

    Article  Google Scholar 

  42. Casaluci, S.; Gemmi, M.; Pellegrini, V.; Di Carlo, A.; Bonaccorso, F. Graphene-based large area dye-sensitized solar cell modules. Nanoscale 2016, 8, 5368–5378.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China (Nos. 21725501, 21771019, 21475007 and 21675009), and the Fundamental Research Funds for the Central Universities (Nos. buctrc201706, buctrc201815 and buctrc201812). We also thank the support from the Public Hatching Platform for Recruited Talents of Beijing University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong Yin or Leyu Wang.

Electronic supplementary material

12274_2018_2195_MOESM1_ESM.pdf

Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Jiang, R., Yin, X. et al. Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt. Nano Res. 12, 159–163 (2019). https://doi.org/10.1007/s12274-018-2195-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2195-5

Keywords

Navigation