Skip to main content
Log in

Precise control of graphene etching by remote hydrogen plasma

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene with atomically smooth and configuration-specific edges plays the key role in the performance of graphene-based electronic devices. Remote hydrogen plasma etching of graphene has been proven to be an effective way to create smooth edges with a specific zigzag configuration. However, the etching process is still poorly understood. In this study, with the aid of a custom-made plasma-enhanced hydrogen etching (PEHE) system, a detailed graphene etching process by remote hydrogen plasma is presented. Specifically, we find that hydrogen plasma etching of graphene shows strong thickness and temperature dependence. The etching process of single-layer graphene is isotropic. This is opposite to the anisotropic etching effect observed for bilayer and thicker graphene with an obvious dependence on temperature. On the basis of these observations, a geometrical model was built to illustrate the configuration evolution of graphene edges during etching, which reveals the origin of the anisotropic etching effect. By further utilizing this model, armchair graphene edges were also prepared in a controlled manner for the first time. These investigations offer a better understanding of the etching process for graphene, which should facilitate the fabrication of graphene-based electronic devices with controlled edges and the exploration of more interesting properties of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Colombo, L.; Wallace, R. M.; Ruoff, R. S. Graphene growth and device integration. Proc. IEEE 2013, 101, 1536–1556.

    Article  Google Scholar 

  2. Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470.

    Article  Google Scholar 

  3. Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  Google Scholar 

  4. Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344.

    Article  Google Scholar 

  5. Liao, L.; Duan, X. F. Graphene for radio frequency electronics. Mater. Today 2012, 15, 328–338.

    Article  Google Scholar 

  6. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  7. Bai, J. W.; Cheng, R.; Xiu, F. X.; Liao, L.; Wang, M. S.; Shailos, A.; Wang, K. L.; Huang, Y.; Duan, X. F. Very large magnetoresistance in graphene nanoribbons. Nat. Nanotechnol. 2010, 5, 655–659.

    Article  Google Scholar 

  8. Girit, Ç. Ö.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C. H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G. et al. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708.

    Article  Google Scholar 

  9. Krauss, B.; Nemes-Incze, P.; Skakalova, V.; Biro, L. P.; von Klitzing, K.; Smet, J. H. Raman scattering at pure graphene zigzag edges. Nano Lett. 2010, 10, 4544–4548.

    Article  Google Scholar 

  10. Liu, Y. Y.; Dobrinsky, A.; Yakobson, B. I. Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett. 2010, 105, 235502.

    Article  Google Scholar 

  11. Suenaga, K.; Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature 2010, 468, 1088–1090.

    Article  Google Scholar 

  12. Tao, C. G.; Jiao, L. Y.; Yazyev, O. V.; Chen, Y. C.; Feng, J. J; Zhang, X. W.; Capaz, R. B.; Tour, J. M.; Zettl, A.; Louie, S. G. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 2011, 7, 616–620.

    Article  Google Scholar 

  13. Ziatdinov, M.; Fujii, S.; Kusakabe, K.; Kiguchi, M.; Mori, T.; Enoki, T. Visualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination. Phys. Rev. B 2013, 87, 115427.

    Article  Google Scholar 

  14. Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.

    Article  Google Scholar 

  15. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

    Article  Google Scholar 

  16. Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

    Article  Google Scholar 

  17. Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.

    Article  Google Scholar 

  18. Yu, W. J.; Duan, X. F. Tunable transport gap in narrow bilayer graphene nanoribbons. Sci. Rep. 2013, 3, 1248.

    Article  Google Scholar 

  19. Magda, G. Z.; Jin, X. Z.; Hagymási, I.; Vancsó, P.; Osváth, Z.; Nemes-Incze, P.; Hwang, C.; Biró, L. P.; Tapasztó, L. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 2014, 514, 608–611.

    Article  Google Scholar 

  20. Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Mullen, K.; Fasel, R. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

    Article  Google Scholar 

  21. Dobrik, G.; Tapasztó, L.; Biró, L. P. Selective etching of armchair edges in graphite. Carbon 2013, 56, 332–338.

    Article  Google Scholar 

  22. Luo, D.; Yang, F.; Wang, X.; Sun, H.; Gao, D. L.; Li, R. M.; Yang, J.; Li, Y. Anisotropic etching of graphite flakes with water vapor to produce armchair-edged graphene. Small 2014, 10, 2809–2814.

    Article  Google Scholar 

  23. Campos, L. C.; Manfrinato, V. R.; Sanchez-Yamagishi, J. D.; Kong, J.; Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 2009, 9, 2600–2604.

    Article  Google Scholar 

  24. Nemes-Incze, P.; Magda, G.; Kamarás, K.; Biró, L. P. Crystallographically selective nanopatterning of graphene on SiO2. Nano Res. 2010, 3, 110–116.

    Article  Google Scholar 

  25. Ci, L. J.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.

    Article  Google Scholar 

  26. Qi, M.; Ren, Z. Y.; Jiao, Y.; Zhou, Y. X.; Xu, X. L.; Li, W. L.; Li, J. Y.; Zheng, X. L.; Bai, J. T. Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene. J. Phys. Chem. C 2013, 117, 14348–14353.

    Article  Google Scholar 

  27. Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069–6076.

    Article  Google Scholar 

  28. Zhang, X. Y.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc. 2014, 136, 3040–3047.

    Article  Google Scholar 

  29. Zhang, Y.; Li, Z.; Kim, P.; Zhang, L.; Zhou, C. W. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 2012, 6, 126–132.

    Article  Google Scholar 

  30. Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of singlecrystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.

    Article  Google Scholar 

  31. Zhang, H. R.; Zhang, Y. H.; Zhang, Y. Q.; Chen, Z. Y.; Sui, Y. P.; Ge, X. M.; Yu, G. H.; Jin, Z.; Liu, X. Y. Edge morphology evolution of graphene domains during chemical vapor deposition cooling revealed through hydrogen etching. Nanoscale 2016, 8, 4145–4150.

    Article  Google Scholar 

  32. Geng, D. C.; Wu, B.; Guo, Y. L.; Luo, B. R.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Liu, Y. Q. Fractal etching of graphene. J. Am. Chem. Soc. 2013, 135, 6431–6434.

    Article  Google Scholar 

  33. Knox, K. R.; Wang, S. C.; Morgante, A.; Cvetko, D.; Locatelli, A.; Mentes, T. O.; Niño, M. A.; Kim, P.; Osgood, R. M. Jr. Spectromicroscopy of single and multilayer graphene supported by a weakly interacting substrate. Phys. Rev. B 2008, 78, 201408(R).

    Google Scholar 

  34. Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D. X.; Gao, H. J.; Wang, E. G.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.

    Article  Google Scholar 

  35. Guo, Y. F.; Guo, W. L. Favorable zigzag configuration at etched graphene edges. J. Phys. Chem. C 2011, 115, 20546–20549.

    Article  Google Scholar 

  36. Zhang, X. W.; Yazyev, O. V.; Feng, J. J.; Xie, L. M.; Tao, C. G.; Chen, Y. C.; Jiao, L. Y.; Pedramrazi, Z.; Zettl, A.; Louie, S. G. et al. Experimentally engineering the edge termination of graphene nanoribbons. ACS Nano 2013, 7, 198–202.

    Article  Google Scholar 

  37. Ma, B. J.; Wang, P. Q.; Ren, S. Z.; Jia, C. C.; Guo, X. F. Versatile optical determination of two-dimensional atomic crystal layers. Carbon 2016, 109, 384–389.

    Article  Google Scholar 

  38. Xie, L. M.; Jiao, L. Y.; Dai, H. J. Selective etching of graphene edges by hydrogen plasma. J. Am. Chem. Soc. 2010, 132, 14751–14753.

    Article  Google Scholar 

  39. Shi, Z. W.; Yang, R.; Zhang, L. C.; Wang, Y.; Liu, D. H.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061–3065.

    Article  Google Scholar 

  40. Diankov, G.; Neumann, M.; Goldhaber-Gordon, D. Extreme monolayerselectivity of hydrogen-plasma reactions with graphene. ACS Nano 2013, 7, 1324–1332.

    Article  Google Scholar 

  41. Wang, G. L.; Wu, S.; Zhang, T. T.; Chen, P.; Lu, X. B.; Wang, S. P.; Wang, D. M.; Watanabe, K.; Taniguchi, T.; Shi, D. X. et al. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Appl. Phys. Lett. 2016, 109, 053101.

    Article  Google Scholar 

  42. Pan, Z. J.; Yang, R. T. The mechanism of methane formation from the reaction between graphite and hydrogen. J. Catal. 1990, 123, 206–214.

    Article  Google Scholar 

  43. Davydova, A.; Despiau-Pujo, E.; Cunge, G.; Graves, D. B. Etching mechanisms of graphene nanoribbons in downstream H2 plasmas: Insights from molecular dynamics simulations. J. Phys. D: Appl. Phys. 2015, 48, 195202.

    Article  Google Scholar 

  44. Harpale, A.; Panesi, M.; Chew, H. B. Plasma-graphene interaction and its effects on nanoscale patterning. Phys. Rev. B 2016, 93, 035416.

    Article  Google Scholar 

  45. Sekerka, R. F. Equilibrium and growth shapes of crystals: How do they differ and why should we care? Cryst. Res. Technol. 2005, 40, 291–306.

    Article  Google Scholar 

  46. Artyukhov, V. I.; Liu, Y. Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA 2012, 109, 15136–15140.

    Article  Google Scholar 

  47. Wu, S.; Liu, B.; Shen, C.; Li, S.; Huang, X. C.; Lu, X. B.; Chen, P.; Wang, G. L.; Wang, D. M.; Liao, M. Z. et al. Magnetotransport properties of graphene nanoribbons with zigzag edges. Phys. Rev. Lett. 2018, 120, 216601.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Key R&D Program of China (No. 2017YFA0204901) and the National Natural Science Foundation of China (Nos. 21373014 and 21727806) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Ren, S., Wang, P. et al. Precise control of graphene etching by remote hydrogen plasma. Nano Res. 12, 137–142 (2019). https://doi.org/10.1007/s12274-018-2192-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2192-8

Keywords

Navigation