Skip to main content
Log in

Nanoformulation of metal complexes: Intelligent stimuli-responsive platforms for precision therapeutics

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Precision medicine is a potential effective therapeutic for various human diseases. Currently, metal complex-based drugs are being successfully used in clinical applications owing to diverse properties such as multiple redox states, photo-induced ligand exchange, and preferential ligand and coordination numbers, which facilitate drug design and development. However, drawbacks such as toxicity, lack of specificity, and severe side effects have hampered their therapeutic outcome. Therefore, innovative strategies for improving the specificity and pharmacokinetics of conventional metal complex-based therapeutic agents are required. Recently, nanotechnology, which provides a unique toolbox for developing effective and safer medicine, has attracted considerable attention, mainly because of their ability to reduce side effects and enhance drug loading efficiency and pharmacokinetics. Considering the promising chemical and physical properties of diverse nanostructures, nanoformulation of metal complexes can be used to effectively address the problems associated with current metallodrug complexes, especially those based on stimuli-responsive therapeutic strategies, with excellent spatial, temporal, and dosage control. In this review, we have mainly focused on the specificity and environment-responsiveness of metallodrug nanoformulations as therapeutics, and summarized the recent strategies being used for developing metal complex-functionalized intelligent nanoplatforms, which respond to various types of stimuli, including endogenous signals (pH, redox conditions, and enzyme activities) or external triggers (light irradiation and magnetic field manipulations). In addition, we have also discussed the potential challenges associated with use of metallodrugs and their nanoformulations as effective precision therapy with improved specificity and minimal side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman, A. A.; Letai, A.; Fisher, D. E.; Flaherty, K. T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 2015, 15, 747–756.

    Google Scholar 

  2. Arnedos, M.; Vicier, C.; Loi, S.; Lefebvre, C.; Michiels, S.; Bonnefoi, H.; Andre, F. Precision medicine for metastatic breast cancer—Limitations and solutions. Nat. Rev. Clin. Oncol. 2015, 12, 693–704.

    Google Scholar 

  3. Mjos, K. D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev. 2014, 114, 4540–4563.

    Google Scholar 

  4. Yang, Y.; Ouyang, R. Z.; Xu, L. N.; Guo, N.; Li, W. W.; Feng, K.; Ouyang, L.; Yang, Z. Y.; Zhou, S.; Miao, Y. Q. Review: Bismuth complexes: Synthesis and applications in biomedicine. J. Coord. Chem. 2015, 68, 379–397.

    Google Scholar 

  5. Pricker, S. P. Medical uses of gold compounds: Past, present and future. Gold Bull. 1996, 29, 53–60.

    Google Scholar 

  6. Bruijnincx, P. C. A.; Sadler, P. J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol. 2008, 12, 197–206.

    Google Scholar 

  7. Romero-Canelón, I.; Sadler, P. J. Next-generation metal anticancer complexes: Multitargeting via redox modulation. Inorg. Chem. 2013, 52, 12276–12291.

    Google Scholar 

  8. Siddik, Z. H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003, 22, 7265–7279.

    Google Scholar 

  9. Wang, X. Y.; Wang, X. H.; Guo, Z. J. Functionalization of platinum complexes for biomedical applications. Acc. Chem. Res. 2015, 48, 2622–2631.

    Google Scholar 

  10. Dhar, S.; Kolishetti, N.; Lippard, S. J.; Farokhzad, O. C. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 1850–1855.

    Google Scholar 

  11. Mout, R.; Moyano, D. F.; Rana, S.; Rotello, V. M. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev. 2012, 41, 2539–2544.

    Google Scholar 

  12. Mehdi, A.; Reye, C.; Corriu, R. From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem. Soc. Rev. 2011, 40, 563–574.

    Google Scholar 

  13. Dobrovolskaia, M. A.; McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2007, 2, 469–478.

    Google Scholar 

  14. Barreto, J. A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in cancer imaging and therapy. Adv. Mater. 2011, 23, H18–H40.

    Google Scholar 

  15. Qin, H. S.; Zhao, C. Q.; Sun, Y. H.; Ren, J. S.; Qu, X. G. Metallo-supramolecular complexes enantioselectively eradicate cancer stem cells in vivo. J. Am. Chem. Soc. 2017, 139, 16201–16209.

    Google Scholar 

  16. Liang, C.; Xu, L. G.; Song, G. S.; Liu, Z. Emerging nanomedicine approaches fighting tumor metastasis: Animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem. Soc. Rev. 2016, 45, 6250–6269.

    Google Scholar 

  17. Wani, W. A.; Prashar, S.; Shreaz, S.; Gómez-Ruiz, S. Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord. Chem. Rev. 2016, 312, 67–98.

    Google Scholar 

  18. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    Google Scholar 

  19. Son, S.; Shin, E.; Kim, B.-S. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules 2014, 15, 628–634.

    Google Scholar 

  20. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2017, 2, 16075.

    Google Scholar 

  21. Yang, P. P.; Gai, S. L.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 2012, 41, 3679–3698.

    Google Scholar 

  22. Meng, F. H.; Zhong, Z. Y.; Feijen, J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009, 10, 197–209.

    Google Scholar 

  23. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204.

    Google Scholar 

  24. Schmaljohann, D. Thermo-and pH-responsive polymers in drug delivery. Adv. Drug Del. Rev. 2006, 58, 1655–1670.

    Google Scholar 

  25. Zhang, Y. Q.; Yu, J. C.; Bomba, H. N.; Zhu, Y.; Gu, Z. Mechanical force-triggered drug delivery. Chem. Rev. 2016, 116, 12536–12563.

    Google Scholar 

  26. Wike-Hooley, J. L.; Haveman, J.; Reinhold, H. S. The relevance of tumour pH to the treatment of malignant disease. Radiother. Oncol. 1984, 2, 343–366.

    Google Scholar 

  27. Kim, J. W.; Dang, C. V. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006, 66, 8927–8930.

    Google Scholar 

  28. Brahimi-Horn, M. C.; Pouysségur, J. Oxygen, a source of life and stress. FEBS Lett. 2007, 581, 3582–3591.

    Google Scholar 

  29. Lee, E. S.; Gao, Z.; Bae, Y. H. Recent progress in tumor pH targeting nanotechnology. J. Control. Release 2008, 132, 164–170.

    Google Scholar 

  30. Li, Y. K.; Li, Y. C.; Zhang, X.; Xu, X. H.; Zhang, Z. J.; Hu, C.; He, Y. Y.; Gu, Z. W. Supramolecular PEGylated dendritic systems as pH/redox dual-responsive theranostic nanoplatforms for platinum drug delivery and NIR imaging. Theranostics 2016, 6, 1293–1305.

    Google Scholar 

  31. Lee, S. M.; O’Halloran, T. V.; Nguyen, S. T. Polymer-caged nanobins for synergistic cisplatin–doxorubicin combination chemotherapy. J. Am. Chem. Soc. 2010, 132, 17130–17138.

    Google Scholar 

  32. Lee, S. M.; Chen, H. M.; O’Halloran, T. V.; Nguyen, S. T. “Clickable” polymer-caged nanobins as a modular drug delivery platform. J. Am. Chem. Soc. 2009, 131, 9311–9320.

    Google Scholar 

  33. Lee, S. M.; Chen, H. M.; Dettmer, C. M.; O’Halloran, T. V.; Nguyen, S. T. Polymer-caged lipsomes: A pH-responsive delivery system with high stability. J. Am. Chem. Soc. 2007, 129, 15096–15097.

    Google Scholar 

  34. Yang, X. Z.; Du, X. J.; Liu, Y.; Zhu, Y. H.; Liu, Y. Z.; Li, Y. P.; Wang, J. Rational design of polyion complex nanoparticles to overcome cisplatin resistance in cancer therapy. Adv. Mater. 2014, 26, 931–936.

    Google Scholar 

  35. Kheirolomoom, A.; Ingham, E. S.; Commisso, J.; Abushaban, N.; Ferrara, K. W. Intracellular trafficking of a pH-responsive drug metal complex. J. Control. Release 2016, 243, 232–242.

    Google Scholar 

  36. Li, M.; Tan, L. S.; Tang, L. F.; Li, A. Q.; Hu, J. Q. Hydrosoluble 50% N-acetylation-thiolated chitosan complex with cobalt as a pH-responsive renal fibrosis targeting drugs. J. Biomater. Sci. Polym. Ed. 2016, 27, 972–985.

    Google Scholar 

  37. Mavuso, S.; Choonara, Y. E.; Marimuthu, T.; Kumar, P.; du Toit, L. C.; Kondiah, P. P.; Pillay, V. A dual pH/redox responsive copper-ligand nanoliposome bioactive complex for the treatment of chronic inflammation. Int. J. Pharm. 2016, 509, 348–359.

    Google Scholar 

  38. Li, H. J.; Du, J. Z.; Liu, J.; Du, X. J.; Shen, S.; Zhu, Y. H.; Wang, X. Y.; Ye, X. D.; Nie, S. M.; Wang, J. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration. ACS Nano 2016, 10, 6753–6761.

    Google Scholar 

  39. Shen, S.; Li, H. J.; Chen, K. G.; Wang, Y. C.; Yang, X. Z.; Lian, Z. X.; Du, J. Z.; Wang, J. Spatial targeting of tumorassociated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett. 2017, 17, 3822–3829.

    Google Scholar 

  40. Meng, F. H.; Hennink, W. E.; Zhong, Z. Y. Reductionsensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009, 30, 2180–2198.

    Google Scholar 

  41. Gauthier, M.A. Redox-responsive drug delivery. Antioxid. Redox Signal. 2014, 21, 705–706.

    Google Scholar 

  42. Schafer, F. Q.; Buettner, G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30, 1191–1212.

    Google Scholar 

  43. Balendiran, G. K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct. 2004, 22, 343–352.

    Google Scholar 

  44. Saito, G.; Swanson, J. A.; Lee, K. D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: Role and site of cellular reducing activities. Adv. Drug Del. Rev. 2003, 55, 199–215.

    Google Scholar 

  45. Feazell, R. P.; Nakayama-Ratchford, N.; Dai, H. J.; Lippard, S. J. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 2007, 129, 8438–8439.

    Google Scholar 

  46. Dhar, S.; Liu, Z.; Thomale, J.; Dai, H. J.; Lippard, S. J. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 2008, 130, 11467–11476.

    Google Scholar 

  47. Cong, Y. W.; Xiao, H. H.; Xiong, H. J.; Wang, Z. G.; Ding, J. X.; Li, C.; Chen, X. S.; Liang, X. J.; Zhou, D. F.; Huang, Y. B. Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer. Adv. Mater. 2018, 30, 1706220.

    Google Scholar 

  48. He, C. B.; Lu, K. D.; Liu, D. M.; Lin, W. B. Nanoscale metal–organic frameworks for the Co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drugresistant ovarian cancer cells. J. Am. Chem. Soc. 2014, 136, 5181–5184.

    Google Scholar 

  49. Della Rocca, J.; Liu, D. M.; Lin, W. B. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44, 957–968.

    Google Scholar 

  50. Wu, M. X.; Yang, Y. W. Metal–organic framework (MOF) -based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.

    Google Scholar 

  51. Zhu, Z. Z.; Wang, Z. H.; Hao, Y. G.; Zhu, C. C.; Jiao, Y.; Chen, H. C.; Wang, Y. M.; Yan, J.; Guo, Z. J.; Wang, X. Y. Glutathione boosting the cytotoxicity of a magnetic platinum(IV) nano-prodrug in tumor cells. Chem. Sci. 2016, 7, 2864–2869.

    Google Scholar 

  52. Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 2007, 8, 722–728.

    Google Scholar 

  53. Shim, M. S.; Xia, Y. N. A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew. Chem., Int. Ed. 2013, 52, 6926–6929.

    Google Scholar 

  54. Gupta, M. K.; Meyer, T. A.; Nelson, C. E.; Duvall, C. L. Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. J. Control. Release 2012, 162, 591–598.

    Google Scholar 

  55. Chung, M. F.; Chia, W. T.; Wan, W. L.; Lin, Y. J.; Sung, H. W. Controlled release of an anti-inflammatory drug using an ultrasensitive ROS-responsive gas-generating carrier for localized inflammation inhibition. J. Am. Chem. Soc. 2015, 137, 12462–12465.

    Google Scholar 

  56. Chen, H. C.; He, W. J.; Guo, Z. J. An H2O2-responsive nanocarrier for dual-release of platinum anticancer drugs and O2: Controlled release and enhanced cytotoxicity against cisplatin resistant cancer cells. Chem. Commun. 2014, 50, 9714–9717.

    Google Scholar 

  57. Zhang, R.; Song, X. J.; Liang, C.; Yi, X.; Song, G. S.; Chao, Y.; Yang, Y.; Yang, K.; Feng, L. Z.; Liu, Z. Catalaseloaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials 2017, 138, 13–21.

    Google Scholar 

  58. Rodríguez, D.; Morrison, C. J.; Overall, C. M. Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta-Mol. Cell Res. 2010, 1803, 39–54.

    Google Scholar 

  59. Hu, J. M.; Zhang, G. Q.; Liu, S. Y. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem. Soc. Rev. 2012, 41, 5933–5949.

    Google Scholar 

  60. Ulijn, R. V. Enzyme-responsive materials: A new class of smart biomaterials. J. Mater. Chem. 2006, 16, 2217–2225.

    Google Scholar 

  61. De La Rica, R.; Aili, D.; Stevens, M. M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Del. Rev. 2012, 64, 967–978.

    Google Scholar 

  62. Huang, Y. Y.; Huang, W.; Chan, L.; Zhou, B. W.; Chen, T. F. A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity. Biomaterials 2016, 103, 183–196.

    Google Scholar 

  63. Huang, P.; Lin, J.; Wang, X. S.; Wang, Z.; Zhang, C. L.; He, M.; Wang, K.; Chen, F.; Li, Z. M.; Shen, G. X. et al. Light-triggered theranostics based on photosensitizerconjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5104–5110.

    Google Scholar 

  64. Ding, X. G.; Liow, C. H.; Zhang, M. X.; Huang, R. J.; Li, C. Y.; Shen, H.; Liu, M. Y.; Zou, Y.; Gao, N.; Zhang, Z. J. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684–15693.

    Google Scholar 

  65. Zhao, J. Y.; Lin, S. X.; Huang, Y.; Zhao, J.; Chen, P. R. Mechanism-based design of a photoactivatable firefly luciferase. J. Am. Chem. Soc. 2013, 135, 7410–7413.

    Google Scholar 

  66. Nomoto, T.; Fukushima, S.; Kumagai, M.; Machitani, K.; Matsumoto, Y.; Oba, M.; Miyata, K.; Osada, K.; Nishiyama, N.; Kataoka, K. Three-layered polyplex micelle as a multifunctional nanocarrier platform for light-induced systemic gene transfer. Nat. Commun. 2014, 5, 3545.

    Google Scholar 

  67. Tian, J. W.; Ding, L.; Ju, H. X.; Yang, Y. C.; Li, X. L.; Shen, Z.; Zhu, Z.; Yu, J. S.; Yang, C. J. A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 9544–9549.

    Google Scholar 

  68. Huang, L.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J. Y.; Han, G. Expanding anti-stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew. Chem., Int. Ed. 2017, 56, 14400–14404.

    Google Scholar 

  69. Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 2010, 110, 2620–2640.

    Google Scholar 

  70. Shen, J.; Chen, G. Y.; Vu, A. M.; Fan, W.; Bilsel, O. S.; Chang, C. C.; Han, G. Engineering the upconversion nanoparticle excitation wavelength: Cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv. Opt. Mater. 2013, 1, 644–650.

    Google Scholar 

  71. Klohs, J.; Wunder, A.; Licha, K. Near-infrared fluorescent probes for imaging vascular pathophysiology. Basic Res. Cardiol. 2008, 103, 144–151.

    Google Scholar 

  72. Jing, T. T.; Fu, L. Y.; Liu, L.; Yan, L. F. A reductionresponsive polypeptide nanogel encapsulating NIR photosensitizer for imaging guided photodynamic therapy. Polym. Chem. 2016, 7, 951–957.

    Google Scholar 

  73. Deng, K. R.; Hou, Z. Y.; Deng, X. R.; Yang, P. P.; Li, C. X.; Lin, J. Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure. Adv. Funct. Mater. 2015, 25, 7280–7290.

    Google Scholar 

  74. Barth, B. M.; I. Altinoğlu, E.; Shanmugavelandy, S. S.; Kaiser, J. M.; Crespo-Gonzalez, D.; DiVittore, N. A.; McGovern, C.; Goff, T. M.; Keasey, N. R.; Adair, J. H. et al. Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano 2011, 5, 5325–5337.

    Google Scholar 

  75. Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.

    Google Scholar 

  76. Kim, H. P.; Ryter, S. W.; Choi, A. M. K. CO as a cellular signaling molecule. Annu. Rev. Pharmacol. Toxicol. 2006, 46, 411–449.

    Google Scholar 

  77. Motterlini, R.; Otterbein, L. E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743.

    Google Scholar 

  78. Matson, J. B.; Webber, M. J.; Tamboli, V. K.; Weber, B.; Stupp, S. I. A peptide-based material for therapeutic carbon monoxide delivery. Soft Matter 2012, 8, 6689–6692.

    Google Scholar 

  79. Fujita, K.; Tanaka, Y.; Abe, S.; Ueno, T. A Photoactive carbon-monoxide-releasing protein cage for dose-regulated delivery in living cells. Angew. Chem., Int. Ed. 2016, 55, 1056–1060.

    Google Scholar 

  80. Nguyen, D.; Nguyen, T. K.; Rice, S. A.; Boyer, C. CO-releasing polymers exert antimicrobial activity. Biomacromolecules 2015, 16, 2776–2786.

    Google Scholar 

  81. Govender, P.; Pai, S.; Schatzschneider, U.; Smith, G. S. Next generation PhotoCORMs: Polynuclear tricarbonylmanganese( I)-functionalized polypyridyl metallodendrimers. Inorg. Chem. 2013, 52, 5470–5478.

    Google Scholar 

  82. Dördelmann, G.; Meinhardt, T.; Sowik, T.; Krueger, A.; Schatzschneider, U. CuAAC click functionalization of azidemodified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. Chem. Commun. 2012, 48, 11528–11530.

    Google Scholar 

  83. Chakraborty, I.; Carrington, S. J.; Hauser, J.; Oliver, S. R.; Mascharak, P. K. Rapid eradication of human breast cancer cells through trackable light-triggered CO delivery by mesoporous silica nanoparticles packed with a designed photoCORM. Chem. Mater. 2015, 27, 8387–8397.

    Google Scholar 

  84. Mackay, F. S.; Woods, J. A.; Heringová, P.; Kašpárková, J.; Pizarro, A. M.; Moggach, S. A.; Parsons, S.; Brabec, V.; Sadler, P. J. A potent cytotoxic photoactivated platinum complex. Proc. Natl. Acad. Sci. USA 2007, 104, 20743–20748.

    Google Scholar 

  85. Frasconi, M.; Liu, Z. C.; Lei, J. Y.; Wu, Y. L.; Strekalova, E.; Malin, D.; Ambrogio, M. W.; Chen, X. Q.; Botros, Y. Y.; Cryns, V. L. et al. Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. J. Am. Chem. Soc. 2013, 135, 11603–11613.

    Google Scholar 

  86. Li, X.; Mu, J.; Liu, F.; Tan, E. W. P.; Khezri, B.; Webster, R. D.; Yeow, E. K. L.; Xing, B. G. Human transport protein carrier for controlled photoactivation of antitumor prodrug and real-time intracellular tumor imaging. Bioconjugate Chem. 2015, 26, 955–961.

    Google Scholar 

  87. Zirkin, S.; Fishman, S.; Sharim, H.; Michaeli, Y.; Don, J.; Ebenstein, Y. Lighting up individual DNA damage sites by in vitro repair synthesis. J. Am. Chem. Soc. 2014, 136, 7771–7776.

    Google Scholar 

  88. Schwarz, A.; Ständer, S.; Berneburg, M.; Böhm, M.; Kulms, D.; van Steeg, H.; Grosse-Heitmeyer, K.; Krutmann, J.; Schwarz, T. Interleukin-12 suppresses ultraviolet radiationinduced apoptosis by inducing DNA repair. Nat. Cell Biol. 2002, 4, 26–31.

    Google Scholar 

  89. Wu, W.; Yao, L. M.; Yang, T. S.; Yin, R. Y.; Li, F. Y.; Yu, Y. L. NIR-light-induced deformation of cross-linked liquidcrystal polymers using upconversion nanophosphors. J. Am. Chem. Soc. 2011, 133, 15810–15813.

    Google Scholar 

  90. Carling, C. J.; Boyer, J. C.; Branda, N. R. Remote-control photoswitching using NIR light. J. Am. Chem. Soc. 2009, 131, 10838–10839.

    Google Scholar 

  91. Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.

    Google Scholar 

  92. Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416–1448.

    Google Scholar 

  93. Hu, J.; Tang, Y. A.; Elmenoufy, A. H.; Xu, H. B.; Cheng, Z.; Yang, X. L. Nanocomposite-based photodynamic therapy strategies for deep tumor treatment. Small 2015, 11, 5860–5887.

    Google Scholar 

  94. Ai, X. Z.; Ho, C. J. H.; Aw, J.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X. Y.; Wang, Y.; Liu, X. G.; Chen, H. B. et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432.

    Google Scholar 

  95. Song, X. J.; Chen, Q.; Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015, 8, 340–354.

    Google Scholar 

  96. Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

    Google Scholar 

  97. Luo, D. D.; Carter, K. A.; Miranda, D.; Lovell, J. F. Chemophototherapy: An emerging treatment option for solid tumors. Adv. Sci. 2017, 4, 1600106.

    Google Scholar 

  98. Bansal, A.; Zhang, Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc. Chem. Res. 2014, 47, 3052–3060.

    Google Scholar 

  99. Yang, X. J.; Liu, Z.; Li, Z. H.; Pu, F.; Ren, J. S.; Qu, X. G. Near-infrared-controlled, targeted hydrophobic drug-delivery system for synergistic cancer therapy. Chem. Eur. J. 2013, 19, 10388–10394.

    Google Scholar 

  100. Xia, Y. N.; Li, W. Y.; Cobley, C. M.; Chen, J. Y.; Xia, X. H.; Zhang, Q.; Yang, M. X.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914–924.

    Google Scholar 

  101. Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.

    Google Scholar 

  102. Liu, D. M.; Xu, X. X.; Du, Y.; Qin, X.; Zhang, Y. H.; Ma, C. S.; Wen, S. H.; Ren, W.; Goldys, E. M.; Piper, J. A. et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat. Commun. 2016, 7, 10254.

    Google Scholar 

  103. Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346–1378.

    Google Scholar 

  104. Dong, H.; Sun, L. D.; Yan, C. H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608–1634.

    Google Scholar 

  105. Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G. et al. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 3125–3129.

    Google Scholar 

  106. Idris, N. M.; Jayakumar, M. K. G.; Bansal, A.; Zhang, Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev. 2015, 44, 1449–1478.

    Google Scholar 

  107. Tsang, M. K.; Bai, G. X.; Hao, J. H. Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem. Soc. Rev. 2015, 44, 1585–1607.

    Google Scholar 

  108. Pierri, A. E.; Huang, P. J.; Garcia, J. V.; Stanfill, J. G.; Chui, M. G.; Wu, G.; Zheng, N. F.; Ford, P. C. A photoCORM nanocarrier for CO release using NIR light. Chem. Commun. 2015, 51, 2072–2075.

    Google Scholar 

  109. Hu, M.; Zhao, J. X.; Ai, X. Z.; Budanovic, M.; Mu, J.; Webster, R. D.; Cao, Q.; Mao, Z. W.; Xing, B. G. Near infrared light-mediated photoactivation of cytotoxic Re(I) complexes by using lanthanide-doped upconversion nanoparticles. Dalton Trans. 2016, 45, 14101–14108.

    Google Scholar 

  110. Perfahl, S.; Natile, M. M.; Mohamad, H. S.; Helm, C. A.; Schulzke, C.; Natile, G.; Bednarski, P. J. Photoactivation of diiodido–Pt(IV) complexes coupled to upconverting nanoparticles. Mol. Pharm. 2016, 13, 2346–2362.

    Google Scholar 

  111. Burks, P. T.; Garcia, J. V.; GonzalezIrias, R.; Tillman, J. T.; Niu, M. T.; Mikhailovsky, A. A.; Zhang, J. P.; Zhang, F.; Ford, P. C. Nitric oxide releasing materials triggered by near-infrared excitation through tissue filters. J. Am. Chem. Soc. 2013, 135, 18145–18152.

    Google Scholar 

  112. Garcia, J. V.; Yang, J. P.; Shen, D. K.; Yao, C.; Li, X. M.; Wang, R.; Stucky, G. D.; Zhao, D. Y.; Ford, P. C.; Zhang, F. NIR-triggered release of caged nitric oxide using upconverting nanostructured materials. Small 2012, 8, 3800–3805.

    Google Scholar 

  113. Dai, Y. L.; Xiao, H. H.; Liu, J. H.; Yuan, Q. H.; Ma, P. A.; Yang, D. M.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Yang, P. P. et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J. Am. Chem. Soc. 2013, 135, 18920–18929.

    Google Scholar 

  114. Min, Y. Z.; Li, J. M.; Liu, F.; Yeow, E. K. L.; Xing, B. G. near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew. Chem. 2014, 126, 1030–1034.

    Google Scholar 

  115. He, S. Q.; Krippes, K.; Ritz, S.; Chen, Z. J.; Best, A.; Butt, H. J.; Mailänder, V.; Wu, S. Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chem. Commun. 2015, 51, 431–434.

    Google Scholar 

  116. Zhang, Y.; Yu, Z. Z.; Li, J. Q.; Ao, Y. X.; Xue, J. W.; Zeng, Z. P.; Yang, X. L.; Tan, T. T. Y. Ultrasmall-superbright neodymium-upconversion nanoparticles via energy migration manipulation and lattice modification: 808 nm-activated drug release. ACS Nano 2017, 11, 2846–2857.

    Google Scholar 

  117. Shanmugam, V.; Chien, Y. H.; Cheng, Y. S.; Liu, T. Y.; Huang, C. C.; Su, C. H.; Chen, Y. S.; Kumar, U.; Hsu, H. F.; Yeh, C. S. Oligonucleotides—assembled Au nanorodassisted cancer photothermal ablation and combination chemotherapy with targeted dual-drug delivery of doxorubicin and cisplatin prodrug. ACS Appl. Mater. Interfaces 2014, 6, 4382–4393.

    Google Scholar 

  118. Bi, H. T.; Dai, Y. L.; Xu, J. T.; Lv, R. C.; He, F.; Gai, S. L.; Yang, D.; Yang, P. P. CuS–Pt(IV)–PEG–FA nanoparticles for targeted photothermal and chemotherapy. J. Mat. Chem. B 2016, 4, 5938–5946.

    Google Scholar 

  119. Shi, S. G.; Chen, X. L.; Wei, J. P.; Huang, Y. Z.; Weng, J.; Zheng, N. F. Platinum(IV) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy. Nanoscale 2016, 8, 5706–5713.

    Google Scholar 

  120. You, C.; Wu, H.; Wang, M.; Gao, Z.; Zhang, X.; Sun, B. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy. Nanotechnology 2018, 29, 015601.

    Google Scholar 

  121. Li, W.; Liu, Z.; Chen, Z. W.; Kang, L. H.; Guan, Y. J.; Ren, J. S.; Qu, X. G. An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells. Nano Res. 2017, 10, 3068–3076.

    Google Scholar 

  122. Ai, F. J.; Ju, Q.; Zhang, X. M.; Chen, X.; Wang, F.; Zhu, G. Y. A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer. Sci. Rep. 2015, 5, 10785.

    Google Scholar 

  123. Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 2012, 6, 560–564.

    Google Scholar 

  124. Zhang, P. Y.; Chiu, C. K.; Huang, H. Y.; Lam, Y. P. Y.; Habtemariam, A.; Malcomson, T.; Paterson, M. J.; Clarkson, G. J.; O’Connor, P. B.; Chao, H. et al. Organoiridium photosensitizers induce specific oxidative attack on proteins within cancer cells. Angew. Chem., Int. Ed. 2017, 56, 14898–14902.

    Google Scholar 

  125. Ju, E. G.; Dong, K.; Chen, Z. W.; Liu, Z.; Liu, C. Q.; Huang, Y. Y.; Wang, Z. Z.; Pu, F.; Ren, J. S.; Qu, X. G. Copper(II)–graphitic carbon nitride triggered synergy: Improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew. Chem. 2016, 128, 11639–11643.

    Google Scholar 

  126. Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042.

    Google Scholar 

  127. Josefsen, L. B.; Boyle, R. W. Photodynamic therapy and the development of metal-based photosensitisers. Met. Based Drugs 2008, 2008, 276109.

    Google Scholar 

  128. Li, S. P. Y.; Lau, C. T. S.; Louie, M. W.; Lam, Y. W.; Cheng, S. H.; Lo, K. K. W. Mitochondria-targeting cyclometalated iridium(III)–PEG complexes with tunable photodynamic activity. Biomaterials 2013, 34, 7519–7532.

    Google Scholar 

  129. Shi, H. F.; Ma, X.; Zhao, Q.; Liu, B.; Qu, Q. Y.; An, Z. F.; Zhao, Y. L.; Huang, W. Ultrasmall phosphorescent polymer dots for ratiometric oxygen sensing and photodynamic cancer therapy. Adv. Funct. Mater. 2014, 24, 4823–4830.

    Google Scholar 

  130. Ding, X. S.; Han, B. H. Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation. Angew. Chem. 2015, 127, 6636–6639.

    Google Scholar 

  131. Huang, L.; Li, Z. J.; Zhao, Y.; Yang, J. Y.; Yang, Y. C.; Pendharkar, A. I.; Zhang, Y. W.; Kelmar, S.; Chen, L. Y.; Wu, W. T. et al. Enhancing photodynamic therapy through resonance energy transfer constructed near-infrared photosensitized nanoparticles. Adv. Mater. 2017, 29, 1604789.

    Google Scholar 

  132. Yuan, A. H.; Tang, X. L.; Qiu, X. F.; Jiang, K.; Wu, J. H.; Hu, Y. Q. Activatable photodynamic destruction of cancer cells by NIR dye/photosensitizer loaded liposomes. Chem. Commun. 2015, 51, 3340–3342.

    Google Scholar 

  133. Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.

    Google Scholar 

  134. Cheng, Y.; Doane, T. L.; Chuang, C. H.; Ziady, A.; Burda, C. Near infrared light-triggered drug generation and release from gold nanoparticle carriers for photodynamic therapy. Small 2014, 10, 1799–1804.

    Google Scholar 

  135. Wang, C.; Cheng, L.; Liu, Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013, 3, 317–330.

    Google Scholar 

  136. Zhang, P.; Steelant, W.; Kumar, M.; Scholfield, M. Versatile photosensitizers for photodynamic therapy at infrared excitation. J. Am. Chem. Soc. 2007, 129, 4526–4527.

    Google Scholar 

  137. Cui, S. S.; Yin, D. Y.; Chen, Y. Q.; Di, Y. F.; Chen, H. Y.; Ma, Y. X.; Achilefu, S.; Gu, Y. Q. In vivo targeted deeptissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 2013, 7, 676–688.

    Google Scholar 

  138. Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.

    Google Scholar 

  139. Wang, X. J.; Wang, C.; Cheng, L.; Lee, S. T.; Liu, Z. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J. Am. Chem. Soc. 2012, 134, 7414–7422.

    Google Scholar 

  140. Huang, P.; Rong, P. F.; Lin, J.; Li, W. W.; Yan, X. F.; Zhang, M. G.; Nie, L. M.; Niu, G.; Lu, J.; Wang, W. et al. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics. J. Am. Chem. Soc. 2014, 136, 8307–8313.

    Google Scholar 

  141. Lin, J.; Wang, M.; Hu, H.; Yang, X. Y.; Wen, B.; Wang, Z. T.; Jacobson, O.; Song, J. B.; Zhang, G. F.; Niu, G. et al. Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and γ-irradiation protection. Adv. Mater. 2016, 28, 3273–3279.

    Google Scholar 

  142. Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.

    Google Scholar 

  143. Zhang, L. Y.; Chen, Y. Y.; Li, Z. L.; Li, L.; Saint-Cricq, P.; Li, C. X.; Lin, J.; Wang, C. G.; Su, Z. M.; Zink, J. I. Tailored synthesis of octopus-type janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angew. Chem., Int. Ed. 2016, 55, 2118–2121.

    Google Scholar 

  144. Li, X. J.; Takashima, M.; Yuba, E.; Harada, A.; Kono, K. PEGylated PAMAM dendrimer–doxorubicin conjugatehybridized gold nanorod for combined photothermalchemotherapy. Biomaterials 2014, 35, 6576–6584.

    Google Scholar 

  145. Leung, S. J.; Kachur, X. M.; Bobnick, M. C.; Romanowski, M. Wavelength-selective light-induced release from plasmon resonant liposomes. Adv. Funct. Mater. 2011, 21, 1113–1121.

    Google Scholar 

  146. Zhang, P. Y.; Wang, J. Q.; Huang, H. Y.; Yu, B. L.; Qiu, K. Q.; Huang, J. J.; Wang, S. T.; Jiang, L.; Gasser, G.; Ji, L. N. et al. Unexpected high photothemal conversion efficiency of gold nanospheres upon grafting with twophoton luminescent ruthenium(II) complexes: A way towards cancer therapy? Biomaterials 2015, 63, 102–114.

    Google Scholar 

  147. Bello-Vieda, N. J.; Pastrana, H. F.; Garavito, M. F.; Ávila, A. G.; Celis, A. M.; Muñoz-Castro, A.; Restrepo, S.; Hurtado, J. J. Antibacterial activities of azole complexes combined with silver nanoparticles. Molecules 2018, 23, 361.

    Google Scholar 

  148. Albada, B.; Metzler-Nolte, N. Highly potent antibacterial organometallic peptide conjugates. Acc. Chem. Res. 2017, 50, 2510–2518.

    Google Scholar 

  149. Chen, Z. W.; Ji, H. W.; Liu, C. Q.; Bing, W.; Wang, Z. Z.; Qu, X. G. A Multinuclear metal complex based DNAsemimetic artificial enzyme: Matrix cleavage for combating bacterial biofilms. Angew. Chem., Int. Ed. 2016, 55, 10732–10736.

    Google Scholar 

  150. Azócar, M. I.; Gómez, G.; Levín, P.; Paez, M.; Muñoz, H.; Dinamarca, N. Review: Antibacterial behavior of carboxylate silver(I) complexes. J. Coord. Chem. 2014, 67, 3840–3853.

    Google Scholar 

  151. Lin, D. H.; Qin, T. Q.; Wang, Y. Q.; Sun, X. Y.; Chen, L. X. Graphene oxide wrapped SERS tags: Multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. ACS Appl. Mater. Interfaces 2014, 6, 1320–1329.

    Google Scholar 

  152. Lovell, J. F.; Jin, C. S.; Huynh, E.; MacDonald, T. D.; Cao, W. G.; Zheng, G. Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew. Chem., Int. Ed. 2012, 51, 2429–2433.

    Google Scholar 

  153. Xu, L. G.; Cheng, L.; Wang, C.; Peng, R.; Liu, Z. Conjugated polymers for photothermal therapy of cancer. Polym. Chem. 2014, 5, 1573–1580.

    Google Scholar 

  154. Huang, P.; Gao, Y.; Lin, J.; Hu, H.; Liao, H. S.; Yan, X. F.; Tang, Y. X.; Jin, A.; Song, J. B.; Niu, G. et al. Tumorspecific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano 2015, 9, 9517–9527.

    Google Scholar 

  155. Lin, M.; Wang, D. D.; Liu, S. W.; Huang, T. T.; Sun, B.; Cui, Y.; Zhang, D. Q.; Sun, H. C.; Zhang, H.; Sun, H. et al. Cupreous complex-loaded chitosan nanoparticles for photothermal therapy and chemotherapy of oral epithelial carcinoma. ACS Appl. Mater. Interfaces 2015, 7, 20801–20812.

    Google Scholar 

  156. Khan, I.; Tang, E.; Arany, P. Molecular pathway of nearinfrared laser phototoxicity involves ATF-4 orchestrated ER stress. Sci. Rep. 2015, 5, 10581.

    Google Scholar 

  157. Thévenot, J.; Oliveira, H.; Sandre, O.; Lecommandoux, S. Magnetic responsive polymer composite materials. Chem. Soc. Rev. 2013, 42, 7099–7116.

    Google Scholar 

  158. Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742.

    Google Scholar 

  159. Gao, J. H.; Gu, H. W.; Xu, B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097–1107.

    Google Scholar 

  160. Sun, C.; Lee, J. S. H.; Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Del. Rev. 2008, 60, 1252–1265.

    Google Scholar 

  161. Åkerman, M. E.; Chan, W. C.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 2002, 99, 12617–12621.

    Google Scholar 

  162. Zhao, W. R.; Gu, J. L.; Zhang, L. X.; Chen, H. R.; Shi, J. L. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 2005, 127, 8916–8917.

    Google Scholar 

  163. Kumar, C. S. S. R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Del. Rev. 2011, 63, 789–808.

    Google Scholar 

  164. Kunz, P. C.; Meyer, H.; Barthel, J.; Sollazzo, S.; Schmidt, A. M.; Janiak, C. Metal carbonyls supported on iron oxide nanoparticles to trigger the CO-gasotransmitter release by magnetic heating. Chem. Commun. 2013, 49, 4896–4898.

    Google Scholar 

  165. Chen, W. H.; Luo, G. F.; Lei, Q.; Cao, F. Y.; Fan, J. X.; Qiu, W. X.; Jia, H. Z.; Hong, S.; Fang, F.; Zeng, X. et al. Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy. Biomaterials 2016, 76, 87–101.

    Google Scholar 

  166. Kim, J. H.; Eguchi, H.; Umemura, M.; Sato, I.; Yamada, S.; Hoshino, Y.; Masuda, T.; Aoki, I.; Sakurai, K.; Yamamoto, M. et al. Magnetic metal-complex-conducting copolymer core–shell nanoassemblies for a single-drug anticancer platform. NPG Asia Mater. 2017, 9, e367.

    Google Scholar 

  167. Stasiuk, G. J.; Long, N. J. The ubiquitous DOTA and its derivatives: The impact of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid on biomedical imaging. Chem. Commun. 2013, 49, 2732–2746.

    Google Scholar 

  168. Liu, C. Y.; Hou, Y.; Gao, M. Y. Are rare-earth nanoparticles suitable for in vivo applications? Adv. Mater. 2014, 26, 6922–6932.

    Google Scholar 

  169. Hu, Q. Y.; Katti, P. S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 2014, 6, 12273–12286.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports by NTU-AIT-MUV NAM/16001, RG 35/15, RG110/16 (S), Merlion 2017 Program (M4082162), JSPS-NTU Joint Research (M4082175) and awarded in Nanyang Technological University, Singapore and the National Natural Science Foundation of China (NSFC) (No. 51628201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengang Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Ai, X., Wang, Z. et al. Nanoformulation of metal complexes: Intelligent stimuli-responsive platforms for precision therapeutics. Nano Res. 11, 5474–5498 (2018). https://doi.org/10.1007/s12274-018-2138-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2138-1

Keywords

Navigation