Skip to main content
Log in

Parallel boron nitride nanoribbons and etch tracks formed through catalytic etching

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

One-dimensional (1D) catalytic etching was investigated in few-layer hexagonal boron nitride (hBN) films. Etching of hBN was shown to share a number of similarities with that of graphitic films. As in graphitic films, etch tracks in hBN commenced at film edges and occurred predominantly along certain crystal directions of its lattice, though it was shown that the tracks were generally narrower than those of few-layer graphene under similar processing conditions. It was also shown that catalytic hydrogenation can occur completely through a few-layer hBN film, demonstrating that this process can be used in the formation of isolated low-dimensional nanoscale structures from other layered 2D materials beyond graphene. This ability for thin hBN films to be etched completely through allowed for a crystalline substrate to guide the etching process, which was demonstrated with the successful etch track formation of few-layer hBN on single-crystalline sapphire substrates. The substrate-guided etching resulted in parallel few-layer hBN nanoribbons having an average width of 32 nm and spacing of 13 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elliot, S. The Physics and Chemistry of Solids; John Wiley & Sons: West Sussex, England, 1998.

    Google Scholar 

  2. Yu, L.; Riddle, A. J.; Wang, S. S.; Sundararajan, A.; Thompson, J.; Chang, Y. J.; Park, M. E.; Seo, S. S. A.; Guiton, B. S. Solid-liquid-vapor synthesis of negative metal oxide nanowire arrays. Chem. Mater. 2016, 28, 8924–8929.

    Article  Google Scholar 

  3. Tomita, A.; Tamai, Y. Optical microscopic study on the catalytic hydrogenation of graphite. J. Phys. Chem. 1974, 78, 2254–2258.

    Article  Google Scholar 

  4. Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912–1915.

    Article  Google Scholar 

  5. Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

    Article  Google Scholar 

  6. Geim, A. K.; MacDonald, A. H. Graphene: Exploring carbon flatland. Phys. Today 2007, 60, 35.

    Google Scholar 

  7. Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.

    Article  Google Scholar 

  8. Ci, L. J.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.

    Article  Google Scholar 

  9. Campos, L. C.; Manfrinato, V. R.; Sanchez-Yamagishi, J. D.; Kong, J.; Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 2009, 9, 2600–2604.

    Article  Google Scholar 

  10. Hunley, D. P.; Sundararajan, A.; Boland, M. J.; Strachan, D. R. Electrostatic force microscopy and electrical isolation of etched few-layer graphene nano-domains. Appl. Phys. Lett. 2014, 105, 243109.

    Article  Google Scholar 

  11. Hunley, D. P.; Boland, M. J.; Strachan, D. R. Integrated nanotubes, etch tracks, and nanoribbons in crystallographic alignment to a graphene lattice. Adv. Mater. 2015, 27, 813–818.

    Article  Google Scholar 

  12. Wang, L. F.; Wu, B.; Jiang, L. L.; Chen, J. S.; Li, Y. T.; Guo, W.; Hu, P. G.; Liu, Y. Q. Growth and etching of monolayer hexagonal boron nitride. Adv. Mater. 2015, 27, 4858–4864.

    Article  Google Scholar 

  13. Liao, Y. L.; Tu, K. X.; Han, X. G.; Hu, L. B.; Connell, J. W.; Chen, Z. F.; Lin, Y. Oxidative etching of hexagonal boron nitride toward nanosheets with defined edges and holes. Sci. Rep. 2015, 5, 14510.

    Article  Google Scholar 

  14. Kim, D. H.; Lee, M.; Ye, B.; Jang, H. K.; Kim, G. T.; Lee, D. J.; Kim, E. S.; Kim, H. D. Catalytically-etched hexagonal boron nitride flakes and their surface activity. Appl. Surf. Sci. 2017, 402, 254–260.

    Article  Google Scholar 

  15. Sutter, P.; Lahiri, J.; Albrecht, P.; Sutter, E. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano 2011, 5, 7303–7309.

    Article  Google Scholar 

  16. Li, L. H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 2014, 8, 1457–1462.

    Article  Google Scholar 

  17. Yamamoto, M.; Einstein, T. L.; Fuhrer, M. S.; Cullen, W. G. Anisotropic etching of atomically thin MoS2. J. Phys. Chem. C 2013, 117, 25643–25649.

    Article  Google Scholar 

  18. Ionescu, R.; George, A.; Ruiz, I.; Favors, Z.; Mutlu, Z.; Liu, C.; Ahmed, K.; Wu, R.; Jeong, J. S.; Zavala, L. et al. Oxygen etching of thick MoS2 films. Chem. Commun. 2014, 50, 11226–11229.

    Article  Google Scholar 

  19. Zhou, H. Q.; Yu, F.; Liu, Y. Y.; Zou, X. L.; Cong, C. X.; Qiu, C. Y.; Yu, T.; Yan, Z.; Shen, X. N.; Sun, L. F. et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 2013, 6, 703–711.

    Article  Google Scholar 

  20. Frindt, R. F.; Yoffe, A. D. Physical properties of layer structures: Optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 1963, 273, 69–83.

    Article  Google Scholar 

  21. Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539.

    Article  Google Scholar 

  22. Yin, J.; Li, J. D.; Hang, Y.; Yu, J.; Tai, G. A.; Li, X. M.; Zhang, Z. H.; Guo, W. L. Boron nitride nanostructures: Fabrication, functionalization and applications. Small 2016, 12, 2942–2968.

    Article  Google Scholar 

  23. Chen, L. X.; He, L.; Wang, H. S.; Wang, H. M.; Tang, S. J.; Cong, C. X.; Xie, H.; Li, L.; Xia, H.; Li, T. X. et al. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nat. Commun. 2017, 8, 14703.

    Article  Google Scholar 

  24. Ma, L.; Zeng, X. C. Catalytic directional cutting of hexagonal boron nitride: The roles of interface and etching agents. Nano Lett. 2017, 17, 3208–3214.

    Article  Google Scholar 

  25. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  Google Scholar 

  26. Park, C. H.; Louie, S. G. Energy gaps and stark effect in boron nitride nanoribbons. Nano Lett. 2008, 8, 2200–2203.

    Article  Google Scholar 

  27. Barone, V.; Peralta, J. E. Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 2008, 8, 2210–2214.

    Article  Google Scholar 

  28. Kan, E. J.; Wu, X. J.; Li, Z. Y.; Zeng, X. C.; Yang, J. L.; Hou, J. G. Half-metallicity in hybrid BCN nanoribbons. J. Chem. Phys. 2008, 129, 084712.

    Article  Google Scholar 

  29. Lopez-Bezanilla, A.; Huang, J. S.; Terrones, H.; Sumpter, B. G. Boron nitride nanoribbons become metallic. Nano Lett. 2011, 11, 3267–3273.

    Article  Google Scholar 

  30. Yoshimoto, M.; Maeda, T.; Ohnishi, T.; Koinuma, H.; Ishiyama, O.; Shinohara, M.; Kubo, M.; Miura, R.; Miyamoto, A. Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin-film fabrication. Appl. Phys. Lett. 1995, 67, 2615–2617.

    Article  Google Scholar 

  31. Hod, O. Graphite and hexagonal boron-nitride have the same interlayer distance. Why? J. Chem. Theory Comput. 2012, 8, 1360–1369.

    Article  Google Scholar 

  32. Luo, Z. T.; Somers, L. A.; Dan, Y. P.; Ly, T.; Kybert, N. J.; Mele, E. J.; Johnson, A. T. C. Size-selective nanoparticle growth on few-layer graphene films. Nano Lett. 2010, 10, 777–781.

    Article  Google Scholar 

  33. Qiu, Z. Y.; Song, L.; Zhao, J.; Li, Z. Y.; Yang, J. L. The nanoparticle size effect in graphene cutting: A “Pac-Man” mechanism. Angew. Chem., Int. Ed. 2016, 55, 9918–9921.

    Article  Google Scholar 

  34. Tsukamoto, T.; Ogino, T. Control of graphene etching by atomic structures of the supporting substrate surfaces. J. Phys. Chem. C 2011, 115, 8580–8585.

    Article  Google Scholar 

  35. Tsukamoto, T.; Ogino, T. Graphene etching controlled by atomic structures on the substrate surface. Carbon 2012, 50, 674–679.

    Article  Google Scholar 

  36. Solís-Fernández, P.; Yoshida, K.; Ogawa, Y.; Tsuji, M.; Ago, H. Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene. Adv. Mater. 2013, 25, 6562–6568.

    Article  Google Scholar 

  37. Iida, Y.; Yamazaki, K.; Ogino, T. Graphene nano-cutting using biologically derived metal nanoparticles. Carbon 2013, 63, 133–139.

    Article  Google Scholar 

  38. Ago, H.; Kayo, Y.; Solís-Fernández, P.; Yoshida, K.; Tsuji, M. Synthesis of high-density arrays of graphene nanoribbons by anisotropic metal-assisted etching. Carbon 2014, 78, 339–346.

    Article  Google Scholar 

  39. Middleman, S. The role of gas-phase reactions in boron nitride growth by chemical vapor deposition. Mater. Sci. Eng. A 1993, 163, 135–140.

    Article  Google Scholar 

  40. Adams, A. C. Characterization of films formed by pyrolysis of borazine. J. Electrochem. Soc. 1981, 128, 1378–1379.

    Article  Google Scholar 

  41. Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.

    Article  Google Scholar 

  42. Mallard, G.; Linstrom, P. J. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, 1998.

    Google Scholar 

  43. Atkins, P.; de Paula, J. Physical Chemistry: Thermodynamics, Structure, and Change, 10th ed.; W. H. Freeman and Company: New York, NY, 2014.

    Google Scholar 

  44. Nasseri, M.; Hunley, D. P.; Sundararajan, A.; Boland, M. J.; Strachan, D. R. Tuning between crystallographically aligned carbon nanotube growth and graphene etching. Carbon 2014, 77, 958–963.

    Article  Google Scholar 

Download references

Acknowledgements

The portion of the reported work on the few-layer graphene/hBN heterostructures was supported by the Department of Energy (DOE) Condensed Matter Physics (CMP) and EPSCoR programs through grant No. 0000223282, with additional coordinated funds from the Kentucky EPSCoR Program through the Kentucky Science and Technology Corporation (KSTC). The portion of the reported work on the etching of few-layer films on r-plane sapphire substrates was supported by the National Science Foundation (NSF) Chemical, Bioengineering, Environmental, and Transport Systems (CBET) program through grant No. 1603152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. Strachan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansary, A., Nasseri, M., Boland, M.J. et al. Parallel boron nitride nanoribbons and etch tracks formed through catalytic etching. Nano Res. 11, 4874–4882 (2018). https://doi.org/10.1007/s12274-018-2076-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2076-y

Keywords

Navigation