Skip to main content
Log in

Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Development of low-cost and high-performance catalysts for hydrogen generation via hydrolysis of ammonia borane (NH3BH3, AB) is a highly desirable pathway for future hydrogen utilization. In this work, Ni nanocatalysts doped with CeOx and supported on graphene (Ni-CeOx/graphene) were synthesized via a facile chemical reduction route and applied as robust catalysts for the hydrolysis of AB in aqueous solution at room temperature. The as-synthesized Ni-CeOx/graphene nanocomposites (NCs) exhibited excellent catalytic activity with a turnover frequency (TOF) as high as 68.2 min−1, which is 49-fold higher than that for a simple Ni nanoparticle catalyst and is among the highest values reported for non-noble metal catalysts in AB hydrolysis. The development of efficient and low-cost Ni-CeOx/graphene catalysts enhances the feasibility of using ammonia borane as a chemical hydrogen storage material, which may find application ina hydrogen fuel-cell based economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, P.; Xiong, Z. T.; Luo, J. Z.; Lin, J. Y.; Tan, K. L. Interaction of hydrogen with metal nitrides and imides. Nature 2002, 420, 302–304.

    Article  Google Scholar 

  2. Yan, H.; Lin, Y.; Wu, H.; Zhang, W. H.; Sun, Z. H.; Cheng, H.; Liu, W.; Wang, C. L.; Li, J. J.; Huang, X. H. et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 2017, 8, 1070.

    Article  Google Scholar 

  3. Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484–7487.

    Article  Google Scholar 

  4. Zhang, J. J.; Kang, Q.; Yang, Z. Q.; Dai, H. B.; Zhuang, D. W.; Wang, P. A cost-effective NiMoB-La(OH)3 catalyst for hydrogen generation from decomposition of alkaline hydrous hydrazine solution. J. Mater. Chem. A 2013, 1, 11623–11628.

    Article  Google Scholar 

  5. Peng, B.; Chen, J. Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy Environ. Sci. 2008, 1, 479–483.

    Google Scholar 

  6. Wang, J.; Li, W.; Wen, Y. R.; Gu, L.; Zhang, Y. Rh-Ni-B nanoparticles as highly efficient catalysts for hydrogen generation from hydrous hydrazine. Adv. Energy Mater. 2015, 5, 1401879.

    Article  Google Scholar 

  7. Tang, C.; Zhang, R.; Lu, W. B.; He, L. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P. Fe-doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 2017, 29, 1602441.

    Article  Google Scholar 

  8. Bi, Q. Y.; Lin, J. D.; Liu, Y. M.; He, H. Y.; Huang F. Q.; Cao, Y. Dehydrogenation of formic acid at room temperature: Boosting palladium nanoparticle efficiency by coupling with pyridinic-nitrogen-doped carbon. Angew. Chem., Int. Ed. 2016, 55, 11849–11853.

    Article  Google Scholar 

  9. Chandra, M.; Xu, Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 2006, 156, 190–194.

    Article  Google Scholar 

  10. Demirci, U. B.; Miele, P. Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ. Sci. 2009, 2, 627–637.

    Article  Google Scholar 

  11. Zhan, W.; Zhu, Q. L.; Xu, Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts. ACS Catal. 2016, 6, 6892–6905.

    Article  Google Scholar 

  12. Kang, J. X.; Chen, T. W.; Zhang, D. F.; Guo, L. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation. Nano Energy 2016, 23, 145–152.

    Article  Google Scholar 

  13. Zhang, H.; Gu, X. J.; Liu, P. L.; Song, J.; Cheng, J.; Su, H. Q. Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride. J. Mater. Chem. A 2017, 5, 2288–2296.

    Article  Google Scholar 

  14. Lu, Z. H.; Li, J. P.; Zhu, A. L.; Yao, Q. L.; Huang, W.; Zhou, R. Y.; Zhou, R. F.; Chen, X. S. Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage. Int. J. Hydrogen Energy 2013, 38, 5330–5337.

    Article  Google Scholar 

  15. Gutowska, A.; Li, L. Y.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W. et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem., Int. Ed. 2005, 44, 3578–3582.

    Article  Google Scholar 

  16. Jiang, H. L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 2011, 170, 56–63.

    Article  Google Scholar 

  17. Chen, W. Y.; Li, D. L.; Wang, Z. J.; Qian, G.; Sui, Z. J.; Duan, X. Z.; Zhou, X. G.; Yeboah, I.; Chen, D. Reaction mechanism and kinetics for hydrolytic dehydrogenation of ammonia borane on a Pt/CNT catalyst. AIChE J. 2017, 63, 60–65.

    Article  Google Scholar 

  18. Ge, Y. Z.; Ye, W. Y.; Shah, Z. H.; Lin, X. J.; Lu, R. W.; Zhang, S. F. PtNi/NiO clusters coated by hollow sillica: Novel design for highly efficient hydrogen production from ammonia-borane. ACS Appl. Mater. Interfaces 2017, 9, 3749–3756.

    Article  Google Scholar 

  19. Zhou, L. M.; Meng, J.; Li, P.; Tao, Z. L.; Mai, L. Q.; Chen, J. Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane. Mater. Horiz. 2017, 4, 268–273.

    Article  Google Scholar 

  20. Yao, Q. L.; Lu, Z. H.; Zhang, Z. J.; Chen, X. S.; Lan, Y. Q. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Sci. Rep. 2014, 4, 7597.

    Article  Google Scholar 

  21. Chen, W. Y.; Ji, J.; Feng, X.; Duan, X. Z.; Qian, G.; Li, P.; Zhou, X. G.; Chen, D.; Yuan, W. K. Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2014, 136, 16736–16739.

    Article  Google Scholar 

  22. Khalily, M. A.; Eren, H.; Akbayrak, S.; Susapto, H. H.; Biyikli, N.; Özkar, S.; Guler, M. O. Facile synthesis of three-dimensional Pt-TiO2 nano-networks: A highly active catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew. Chem., Int. Ed. 2016, 55, 12257–12261.

    Article  Google Scholar 

  23. Akbayrak, S.; Tonbul, Y.; Özkar, S. Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane. Appl. Catal. B: Environ. 2016, 198, 162–170.

    Article  Google Scholar 

  24. Akbayrak, S.; Özkar, S. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane. ACS Appl. Mater. Interfaces 2012, 4, 6302–6310.

    Article  Google Scholar 

  25. Yao, Q. L.; Shi, W. M.; Feng, G.; Lu, Z. H.; Zhang, X. L.; Tao, D. J.; Kong, D. J.; Chen, X. S. Ultrafine Ru nanoparticles embedded in SiO2 nanospheres: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. J. Power Sources 2014, 257, 293–299.

    Article  Google Scholar 

  26. Yao, Q. L.; Lu, Z. H.; Jia, Y. S.; Chen, X. S.; Liu, X. In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis. Int. J. Hydrogen Energy 2015, 40, 2207–2215.

    Article  Google Scholar 

  27. Metin, O.; Mazumder, V.; Özkar, S.; Sun, S. S. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469.

    Article  Google Scholar 

  28. Li, P. Z.; Aijaz, A.; Xu, Q. Highly dispersed surfactant-free nickel nanoparticles and their remarkable catalytic activity in the hydrolysis of ammonia borane for hydrogen generation. Angew. Chem., Int. Ed. 2012, 51, 6753–6756.

    Article  Google Scholar 

  29. Peng, C. Y.; Kang, L.; Cao, S.; Chen, Y.; Lin, Z. S.; Fu, W. F. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia–borane. Angew. Chem., Int. Ed. 2015, 54, 15725–15729.

    Article  Google Scholar 

  30. Yao, Q. L.; Lu, Z. H.; Huang, W.; Chen, X. S.; Zhu, J. Highly Pt-like activity of Ni-Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane. J. Mater. Chem. A 2016, 4, 8579–8583.

    Article  Google Scholar 

  31. Chen, G. Z.; Desinan, S.; Rosei, R.; Rosei, F.; Ma, D. L. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane. Chem. Eur. J. 2012, 18, 7925–7930.

    Article  Google Scholar 

  32. Li, P. Z.; Aranishi, K.; Xu, Q. ZIF-8 immobilized nickel nanoparticles: Highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem. Commun. 2012, 48, 3173–3175.

    Article  Google Scholar 

  33. Cao, C. Y.; Chen, C. Q.; Li, W.; Song, W. G.; Cai, W. Nanoporous nickel spheres as highly active catalyst for hydrogen generation from ammonia borane. ChemSusChem 2010, 3, 1241–1244.

    Article  Google Scholar 

  34. Lu, Z. H.; Li, J. P.; Feng, G.; Yao, Q. L.; Zhang, F.; Zhou, R. Y.; Tao, D. J.; Chen, X. S.; Yu, Z. Q. Synergistic catalysis of MCM-41 immobilized Cu-Ni nanoparticles in hydrolytic dehydrogeneration of ammonia borane. Int. J. Hydrogen Energy 2014, 39, 13389–13395.

    Article  Google Scholar 

  35. Du, X. Q.; Yang, C. L.; Zeng, X.; Wu, T.; Zhou, Y. H.; Cai, P.; Cheng, G. Z.; Luo, W. Amorphous NiP supported on rGO for superior hydrogen generation from hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2017, 42, 14181–14187.

    Article  Google Scholar 

  36. Zhang, J. K.; Chen, C. Q.; Yan, W. J.; Duan, F. F.; Zhang, B.; Gao, Z.; Qin, Y. Ni Nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from the hydrolysis of ammonia borane. Catal. Sci. Technol. 2016, 6, 2112–2119.

    Article  Google Scholar 

  37. De, S.; Zhang, J. G.; Luque; R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347.

    Article  Google Scholar 

  38. Zhou, L. M.; Zhang, T. R.; Tao, Z. L.; Chen, J. Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane. Nano Res. 2014, 7, 774–781.

    Article  Google Scholar 

  39. Du, J.; Cheng, F. Y.; Si, M.; Liang, J. Tao, Z. L.; Chen, J. Nanoporous Ni-based catalysts for hydrogen generation from hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2013, 38, 5768–5774.

    Article  Google Scholar 

  40. Yang, X. J.; Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Carbon-supported Ni1-x@Ptx (x = 0.32, 0.43, 0.60, 0.67, and 0.80) core–shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2011, 36, 1984–1990.

    Article  Google Scholar 

  41. Zhu, Q. L.; Xu, Q. Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem. 2016, 1, 220–245.

    Article  Google Scholar 

  42. Wang, J.; Zhang, X. B.; Wang, Z. L.; Wang, L. M.; Zhang, Y. Rhodium-nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy Environ. Sci. 2012, 5, 6885–6888.

    Article  Google Scholar 

  43. Yang, L.; Luo, W.; Cheng, G. Z. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane. ACS Appl. Mater. Interfaces 2013, 5, 8231–8240.

    Article  Google Scholar 

  44. Wang, Y.; Arandiyan, H.; Scott, J.; Bagheri, A.; Dai, H. X.; Amal, R. Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: A review. J. Mater. Chem. A 2017, 5, 8825–8846.

    Article  Google Scholar 

  45. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Sea, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271.

    Article  Google Scholar 

  46. Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Pt@CeO2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications, J. Am. Chem. Soc. 2013, 135, 15864–15872.

    Article  Google Scholar 

  47. Song, S. Y.; Li, K.; Pan, J.; Wang, F.; Li, J. Q.; Feng, J.; Yao, S.; Ge, X.; Wang, X.; Zhang, H. J. Achieving the trade-off between selectivity and activity in semihydrogenation of alkynes by fabrication of (asymmetrical Pd@Ag core)@(CeO2 shell) nanocatalysts via autoredox reaction. Adv. Mater. 2017, 29, 1605332.

    Article  Google Scholar 

  48. Zhu, F. F.; Chen, G. Z.; Sun, S. X.; Sun, X. In situ growth of Au@CeO2 core–shell nanoparticles and CeO2 nanotubes from Ce(OH)CO3 nanorods. J. Mater. Chem. A 2013, 1, 288–294.

    Article  Google Scholar 

  49. Du, X. Q.; Liu, C.; Du, C.; Cai, P.; Cheng, G. Z.; Luo, W. Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature. Nano Res. 2017, 10, 2856–2865.

    Article  Google Scholar 

  50. Zhang, Z. J.; Lu, Z. H.; Tan, H. L.; Chen, X. S.; Yao, Q. L. CeOx-modified RhNi nanoparticles grown on rGO as highly efficient catalysts for complete hydrogen generation from hydrazine borane and hydrazine. J. Mater. Chem. A 2015, 3, 23520–23529.

    Article  Google Scholar 

  51. Yao, Q. L.; Shi, Y.; Zhang, X. L.; Chen, X. S.; Lu, Z. H. Facile synthesis of platinum–cerium(IV) oxide hybrids arched on reduced graphene oxide catalyst in reverse micelles with high activity and durability for hydrolysis of ammonia borane. Chem. Asian J. 2016, 11, 3251–3257.

    Article  Google Scholar 

  52. Yan, J. M.; Zhang, X. B.; Han, S.; Shioyama, H.; Xu, Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew. Chem., Int. Ed. 2008, 47, 2287–2289.

    Article  Google Scholar 

  53. Shishkin, M.; Ziegler, T. The electronic structure and chemical properties of a Ni/CeO2 anode in a solid oxide fuel cell: A DFT + U study. J. Phys. Chem. C 2010, 114, 21411–21416.

    Article  Google Scholar 

  54. Hahn, K. R.; Seitsonen, A. P.; Iannuzzi, M.; Hutter, J. Functionalization of CeO2(111) by deposition of small Ni clusters: Effects on CO2 adsorption and O vacancy formation. ChemCatChem 2015, 7, 625–634.

    Article  Google Scholar 

  55. Hou, C. C.; Li, Q.; Wang, C. J.; Peng, C. Y.; Chen, Q. Q.; Ye, H. F.; Fu, W. F.; Che, C. M.; López, N.; Chen, Y. Ternary Ni–Co–P nanoparticles as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane. Energy Environ. Sci. 2017, 10, 1770–1776.

    Article  Google Scholar 

  56. Feng, K.; Zhong, J.; Zhao, B. H.; Zhang, H.; Xu, L.; Sun, X. H.; Lee, S. T. CuxCo1–xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia–borane. Angew. Chem., Int. Ed. 2016, 55, 11950–11954.

    Article  Google Scholar 

  57. Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Xu, Q. Monodispersed CuCo nanoparticles supported on diamine-functionalized graphene as a non-noble metal catalyst for hydrolytic dehydrogenation of ammonia borane. ChemNanoMat 2016, 2, 942–945.

    Article  Google Scholar 

  58. Liu, P. L.; Gu, X. J.; Kang, K.; Zhang, H.; Cheng; J.; Su, H. Q. Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks. ACS Appl. Mater. Interfaces 2017, 9, 10759–10767.

    Article  Google Scholar 

  59. Yen, H.; Seo, Y.; Kaliaguine, S.; Kleitz, F. Role of metal-support interactions, particle size, and metal-metal synergy in CuNi nanocatalysts for H2 generation. ACS Catal. 2015, 5, 5505–5511.

    Article  Google Scholar 

  60. Yan, J. M.; Zhang, X. B.; Shioyama, H.; Xu, Q. Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles. J. Power Sources 2010, 195, 1091–1094.

    Article  Google Scholar 

  61. Wang, C. L.; Tuninetti, J.; Wang, Z.; Zhang, C.; Ciganda, R.; Salmon, L.; Moya, S.; Ruiz, J.; Astruc, D. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: High efficiency, mechanism, and controlled hydrogen release. J. Am. Chem. Soc. 2017, 139, 11610–11615.

    Article  Google Scholar 

  62. Yang, Y. W.; Lu, Z. H.; Hu, Y. J.; Zhang, Z. J.; Shi, W. M.; Chen, X. S.; Wang, T. T. Facile In situ synthesis of copper nanoparticles supported on reduced graphene oxide for hydrolytic dehydrogenation of ammonia borane. RSC Adv. 2014, 4, 13749–13752.

    Article  Google Scholar 

  63. Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. J. Power Sources 2006, 163, 364–370.

    Article  Google Scholar 

  64. Akbayrak, S.; Taneroglu, O.; Özkar, S. Nanoceria supported cobalt(0) nanoparticles: A magnetically separable and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane. New J. Chem. 2017, 41, 6546–6552.

    Article  Google Scholar 

  65. Liao, J. Y.; Li, H.; Zhang, X. B.; Feng, K. J.; Yao, Y. L. Fabrication of a Ti-supported NiCo2O4 nanosheet array and its superior catalytic performance in the hydrolysis of ammonia borane for hydrogen generation. Catal. Sci. Technol. 2016, 6, 3893–3899.

    Article  Google Scholar 

  66. Yao, Q. L.; Yang, K.; Hong, X. L.; Chen, X. S.; Lu, Z. H. Base-promoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles. Catal. Sci. Technol. 2018, 8, 870–877.

    Article  Google Scholar 

  67. Li, Z.; He, T.; Liu, L.; Chen, W. D.; Zhang, M.; Wu, G. T.; Chen, P. Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: From mechanistic study to catalyst design. Chem. Sci. 2017, 8, 781–788.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21763012, 21463012, 21371162, 21673213, and 21521001), the Natural Science Foundation of Jiangxi Province of China (Nos. 20171ACB21021 and 2016BAB203087), and the National Research Fund for Fundamental Key Project (No. 2014CB931803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhang-Hui Lu, Xiangshu Chen or Hai-Long Jiang.

Electronic supplementary material

12274_2018_2031_MOESM1_ESM.pdf

Facile synthesis of graphene-supported Ni-CeOx nano-composites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Q., Lu, ZH., Yang, Y. et al. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Res. 11, 4412–4422 (2018). https://doi.org/10.1007/s12274-018-2031-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2031-y

Keywords

Navigation