Skip to main content
Log in

Exciton dissociation dynamics and light-driven H2 generation in colloidal 2D cadmium chalcogenide nanoplatelet heterostructures

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solar-to-H2 conversion is attracting much research attention as a potential approach to meet global renewable energy demands. Although significant advances have been made using metal-tipped colloidal cadmium chalcogenide zero-dimensional (0D) quantum dots and one-dimensional (1D) nanorod heterostructures in solar-to-H2 conversion, their efficiency may be further enhanced using an emerging class of colloidal cadmium chalcogenide nanocrystals, namely two-dimensional (2D) nanoplatelets (NPLs), because of their unique properties. In this review, we summarize the recent advances on exciton dissociation dynamics and light-driven H2 generation performance of colloidal nanoplatelet heterostructures. Following an introduction on the electronic structure of 2D NPLs, we discuss the dynamics of exciton dissociation by electron transfer to molecular acceptors. The exciton quenching dynamics of CdS NPL-Pt and CdSe NPL-Pt heterostructures are compared to highlight the effect of material properties on the relative contributions of the energy-transfer and electron-transfer pathways. Representative solar-to-H2 conversion performances of 2D NPL-metal heterostructures are discussed and compared with those of 1D nanorod-metal heterostructures. Finally, we discuss the challenges in further improving the solar-to-fuel conversion efficiencies of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  CAS  Google Scholar 

  2. Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S. et al. Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 2002, 298, 981–987.

    Article  CAS  Google Scholar 

  3. Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.

    Article  CAS  Google Scholar 

  4. Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M. et al. Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18–21, 2005; U.S. Department of Energy, Office of Basic Energy Science: Washington, DC, 2015.

    Google Scholar 

  5. Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 1989, 22, 163–170.

    Article  CAS  Google Scholar 

  6. Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.

    Article  CAS  Google Scholar 

  7. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.

    Article  CAS  Google Scholar 

  8. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  CAS  Google Scholar 

  9. Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

    Article  Google Scholar 

  10. Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

    Article  CAS  Google Scholar 

  11. Zhu, H. M.; Lian, T. Q. Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion. Energy Environ. Sci. 2012, 5, 9406–9418.

    Article  CAS  Google Scholar 

  12. Wu, K. F.; Zhu, H. M.; Lian, T. Q. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Acc. Chem. Res. 2015, 48, 851–859.

    Article  CAS  Google Scholar 

  13. Wu, K. F.; Lian, T. Q. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem. Soc. Rev. 2016, 45, 3781–3810.

    Article  CAS  Google Scholar 

  14. Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 2013, 25, 3820–3839.

    Article  CAS  Google Scholar 

  15. Li, Q.; Meng, H.; Zhou, P.; Zheng, Y. Q.; Wang, J.; Yu, J. G.; Gong, J. R. Zn1–xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 2013, 3, 882–889.

    Article  CAS  Google Scholar 

  16. Zhang, J.; Yu, J. G.; Jaroniec, M.; Gong, J. R. Noble metalfree reduced graphene oxide-ZnxCd1–xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 2012, 12, 4584–4589.

    Article  CAS  Google Scholar 

  17. Zhang, J.; Yu, J. G.; Zhang, Y. M.; Li, Q.; Gong, J. R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 2011, 11, 4774–4779.

    Article  CAS  Google Scholar 

  18. Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884.

    Article  CAS  Google Scholar 

  19. Zhang, K.; Dai, Y. W.; Zhou, Z. H.; Ullah Jan, S.; Guo, L. J.; Gong, J. R. Polarization-induced saw-tooth-like potential distribution in zincblende-wurtzite superlattice for efficient charge separation. Nano Energy 2017, 41, 101–108.

    Article  CAS  Google Scholar 

  20. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

    Article  CAS  Google Scholar 

  21. Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571.

    Article  CAS  Google Scholar 

  22. Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

    Article  CAS  Google Scholar 

  23. Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

    Article  CAS  Google Scholar 

  24. Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mat. 2003, 15, 2854–2860.

    Article  CAS  Google Scholar 

  25. Jasieniak, J.; Smith, L.; van Embden, J.; Mulvaney, P.; Califano, M. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 2009, 113, 19468–19474.

    Article  CAS  Google Scholar 

  26. Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 2000, 287, 1011–1013.

    Article  CAS  Google Scholar 

  27. Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.

    Article  CAS  Google Scholar 

  28. Schaller, R. D.; Sykora, M.; Pietryga, J. M.; Klimov, V. I. Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 2006, 6, 424–429.

    Article  CAS  Google Scholar 

  29. Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673.

    Article  CAS  Google Scholar 

  30. Mcguire, J. A.; Joo, J.; Pietryga, J. M.; Schaller, R. D.; Klimov, V. I. New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 2008, 41, 1810–1819.

    Article  CAS  Google Scholar 

  31. Cirloganu, C. M.; Padilha, L. A.; Lin, Q. L.; Makarov, N. S.; Velizhanin, K. A.; Luo, H. M.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nat. Commun. 2014, 5, 4148.

    Article  CAS  Google Scholar 

  32. Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Ann. Rev. Condens. Matter Phys. 2014, 5, 285–316.

    Article  CAS  Google Scholar 

  33. Padilha, L. A.; Stewart, J. T.; Sandberg, R. L.; Bae, W. K.; Koh, W.-K.; Pietryga, J. M.; Klimov, V. I. Aspect ratio dependence of Auger recombination and carrier multiplication in PbSe nanorods. Nano Lett. 2013, 13, 1092–1099.

    Article  CAS  Google Scholar 

  34. Zhu, H. M.; Yang, Y.; Lian, T. Q. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals. Acc. Chem. Res. 2013, 46, 1270–1279.

    Article  CAS  Google Scholar 

  35. Zhu, H. M.; Song, N. H.; Rodríguez-Córdoba, W.; Lian, T. Q. Wave function engineering for efficient extraction of up to nineteen electrons from one CdSe/CdS quasi-type II quantum dot. J. Am. Chem. Soc. 2012, 134, 4250–4257.

    Article  CAS  Google Scholar 

  36. Zhu, H. M.; Lian, T. Q. Enhanced multiple exciton dissociation from CdSe quantum rods: The effect of nanocrystal shape. J. Am. Chem. Soc. 2012, 134, 11289–11297.

    Article  CAS  Google Scholar 

  37. Jin, S. Y.; Lian, T. Q. Electron transfer dynamics of single quantum dots on the (110) surface of a rutile TiO2 single crystal. Sci. China Chem. 2011, 54, 1898–1902.

    Article  CAS  Google Scholar 

  38. Song, N. H.; Zhu, H. M.; Jin, S. Y.; Lian, T. Q. Hole transfer from single quantum dots. ACS Nano 2011, 5, 8750–8759.

    Article  CAS  Google Scholar 

  39. Yang, Y.; Rodríguez-Córdoba, W.; Lian, T. Q. Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions. J. Am. Chem. Soc. 2011, 133, 9246–9249.

    Article  CAS  Google Scholar 

  40. Zhu, H. M.; Song, N. H.; Lian, T. Q. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots. J. Am. Chem. Soc. 2011, 133, 8762–8771.

    Article  CAS  Google Scholar 

  41. Yang, Y.; Lian, T. Q. Efficient multiple exciton dissociation and hot electron extraction by ultrafast interfacial electron transfer from PbS QD. Coord. Chem. Rev. 2014, 263–264, 229–238.

    Article  CAS  Google Scholar 

  42. Yang, Y.; Rodríguez-Córdoba, W.; Xiang, X.; Lian, T. Q. Strong electronic coupling and ultrafast electron transfer between PbS quantum dots and TiO2 nanocrystalline films. Nano Lett. 2012, 12, 303–309.

    Article  CAS  Google Scholar 

  43. Yang, Y.; Liu, Z.; Lian, T. Q. Bulk transport and interfacial transfer dynamics of photogenerated carriers in CdSe quantum dot solid electrodes. Nano Lett. 2013, 13, 3678–3683.

    Article  CAS  Google Scholar 

  44. Zhu, H. M.; Yang, Y.; Hyeon-Deuk, K.; Califano, M.; Song, N. H.; Wang, Y. W.; Zhang, W. Q.; Prezhdo, O. V.; Lian, T. Q. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett. 2014, 14, 1263–1269.

    Article  CAS  Google Scholar 

  45. Zhu, H. M.; Song, N. H.; Lian, T. Q. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 2010, 132, 15038–15045.

    Article  CAS  Google Scholar 

  46. Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L.-W.; Paul Alivisatos, A. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430, 190–195.

    CAS  Google Scholar 

  47. Li, H. B.; Kanaras, A. G.; Manna, L. Colloidal branched semiconductor nanocrystals: State of the art and perspectives. Acc. Chem. Res. 2013, 46, 1387–1396.

    Article  CAS  Google Scholar 

  48. Shieh, F.; Saunders, A. E.; Korgel, B. A. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 2005, 109, 8538–8542.

    Article  CAS  Google Scholar 

  49. Li, L.-S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P. Band gap variation of size-and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001, 1, 349–351.

    Article  CAS  Google Scholar 

  50. Wu, K. F.; Hill, L. J.; Chen, J. Q.; McBride, J. R.; Pavlopolous, N. G.; Richey, N. E.; Pyun, J.; Lian, T. Q. Universal length dependence of rod-to-seed exciton localization efficiency in type I and quasi-type II CdSe@CdS nanorods. ACS Nano 2015, 9, 4591–4599.

    Article  CAS  Google Scholar 

  51. Habas, S. E.; Yang, P. D.; Mokari, T. Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc. 2008, 130, 3294–3295.

    Article  CAS  Google Scholar 

  52. Wu, K. F.; Zhu, H. M.; Liu, Z.; Rodríguez-Córdoba, W.; Lian, T. Q. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 10337–10340.

    Article  CAS  Google Scholar 

  53. Acharya, K. P.; Khnayzer, R. S.; O’Connor, T.; Diederich, G.; Kirsanova, M.; Klinkova, A.; Roth, D.; Kinder, E.; Imboden, M.; Zamkov, M. The role of hole localization in sacrificial hydrogen production by semiconductor–metal heterostructured nanocrystals. Nano Lett. 2011, 11, 2919–2926.

    Article  CAS  Google Scholar 

  54. Amirav, L.; Alivisatos, A. P. Photocatalytic hydrogen production with tunable nanorod heterostructures. J. Phys. Chem. Lett. 2010, 1, 1051–1054.

    Article  CAS  Google Scholar 

  55. Bang, J. U.; Lee, S. J.; Jang, J. S.; Choi, W.; Song, H. Geometric effect of single or double metal-tipped CdSe nanorods on photocatalytic H2 generation. J. Phys. Chem. Lett. 2012, 3, 3781–3785.

    Article  CAS  Google Scholar 

  56. Berr, M.; Vaneski, A.; Susha, A. S.; Rodríguez-Fernández, J.; Doblinger, M.; Jackel, F.; Rögach, A. L.; Feldmann, J. Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation. Appl. Phys. Lett. 2010, 97, 093108.

    Article  CAS  Google Scholar 

  57. Berr, M. J.; Wagner, P.; Fischbach, S.; Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl. Phys. Lett. 2012, 100, 223903.

    Article  CAS  Google Scholar 

  58. Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

    Article  CAS  Google Scholar 

  59. Wu, K. F.; Chen, Z. Y.; Lv, H. J.; Zhu, H. M.; Hill, C. L.; Lian, T. Q. Hole removal rate limits photodriven H2 generation efficiency in CdS-Pt and CdSe/CdS-Pt semiconductor nanorod–metal tip heterostructures. J. Am. Chem. Soc. 2014, 136, 7708–7716.

    Article  CAS  Google Scholar 

  60. Zhu, H. M.; Song, N. H.; Lv, H. J.; Hill, C. L.; Lian, T. Q. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 11701–11708.

    Article  CAS  Google Scholar 

  61. Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 2006, 128, 5632–5633.

    Article  CAS  Google Scholar 

  62. Ithurria, S.; Dubertret, B. Quasi 2D colloidal cdse platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

    Article  CAS  Google Scholar 

  63. Ouyang, J. Y.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 2008, 112, 13805–13811.

    Article  CAS  Google Scholar 

  64. Son, J. S.; Wen, X.-D.; Joo, J.; Chae, J.; Baek, S.-I.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem., Int. Ed. 2009, 48, 6861–6864.

    Article  CAS  Google Scholar 

  65. Ithurria, S.; Bousquet, G.; Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 2011, 133, 3070–3077.

    Article  CAS  Google Scholar 

  66. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. Colloidal nanoplatelets with twodimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

    Article  CAS  Google Scholar 

  67. Li, Z.; Peng, X. G. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects. J. Am. Chem. Soc. 2011, 133, 6578–6586.

    Article  CAS  Google Scholar 

  68. She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Demortière, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 2014, 14, 2772–2777.

    Article  CAS  Google Scholar 

  69. Achtstein, A. W.; Antanovich, A.; Prudnikau, A.; Scott, R.; Woggon, U.; Artemyev, M. Linear absorption in CdSe nanoplates: Thickness and lateral size dependency of the intrinsic absorption. J. Phys. Chem. C 2015, 119, 20156–20161.

    Article  CAS  Google Scholar 

  70. Yeltik, A.; Delikanli, S.; Olutas, M.; Kelestemur, Y.; Guzelturk, B.; Demir, H. V. Experimental determination of the absorption cross-section and molar extinction coefficient of colloidal CdSe nanoplatelets. J. Phys. Chem. C 2015, 119, 26768–26775.

    Article  CAS  Google Scholar 

  71. Naeem, A.; Masia, F.; Christodoulou, S.; Moreels, I.; Borri, P.; Langbein, W. Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets. Phys. Rev. B 2015, 91, 121302.

    Article  CAS  Google Scholar 

  72. Ma, X. D.; Diroll, B. T.; Cho, W.; Fedin, I.; Schaller, R. D.; Talapin, D. V.; Gray, S. K.; Wiederrecht, G. P.; Gosztola, D. J. Size-dependent biexciton quantum yields and carrier dynamics of quasi-two-dimensional core/shell nanoplatelets. ACS Nano 2017, 11, 9119–9127.

    Article  CAS  Google Scholar 

  73. Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V. Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv. Mater. 2017, 29, 1700821.

    Article  CAS  Google Scholar 

  74. Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y. X.; Kuno, M. Efficient photocatalytic hydrogen generation from Ni nanoparticle decorated CdS nanosheets. ACS Catal. 2015, 5, 6615–6623.

    Article  CAS  Google Scholar 

  75. Wu, K. F.; Li, Q. Y.; Du, Y. L.; Chen, Z. Y.; Lian, T. G. Ultrafast exciton quenching by energy and electron transfer in colloidal CdSe nanosheet-Pt heterostructures. Chem. Sci. 2015, 6, 1049–1054.

    Article  CAS  Google Scholar 

  76. Li, Q. Y.; Zhou, B. Y.; McBride, J. R.; Lian, T. Q. Efficient diffusive transport of hot and cold excitons in colloidal type II CdSe/CdTe core/crown nanoplatelet heterostructures. ACS Energy Letters 2017, 2, 174–181.

    Article  CAS  Google Scholar 

  77. Li, Q. Y.; Wu, K. F.; Chen, J. Q.; Chen, Z. Y.; McBride, J. R.; Lian, T. Q. Size-independent exciton localization efficiency in colloidal CdSe/CdS core/crown nanosheet type-I heterostructures. ACS Nano 2016, 10, 3843–3851.

    Article  CAS  Google Scholar 

  78. Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 2014, 14, 207–213.

    Article  CAS  Google Scholar 

  79. Antanovich, A. V.; Prudnikau, A. V.; Melnikau, D.; Rakovich, Y. P.; Chuvilin, A.; Woggon, U.; Achtstein, A. W.; Artemyev, M. V. Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets. Nanoscale 2015, 7, 8084–8092.

    Article  CAS  Google Scholar 

  80. Pedetti, S.; Ithurria, S.; Heuclin, H.; Patriarche, G.; Dubertret, B. Type-II CdSe/CdTe core/crown semiconductor nanoplatelets. J. Am. Chem. Soc. 2014, 136, 16430–16438.

    Article  CAS  Google Scholar 

  81. Wu, K. F.; Li, Q. Y.; Jia, Y. Y.; McBride, J. R.; Xie, Z.-X.; Lian, T. Q. Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets. ACS Nano 2015, 9, 961–968.

    Article  CAS  Google Scholar 

  82. Li, Q. Y.; Xu, Z. H.; McBride, J. R.; Lian, T. Q. Low threshold multiexciton optical gain in colloidal CdSe/CdTe core/crown type-II nanoplatelet heterostructures. ACS Nano 2017, 11, 2545–2553.

    Article  CAS  Google Scholar 

  83. Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.

    Article  CAS  Google Scholar 

  84. Pedetti, S.; Nadal, B.; Lhuillier, E.; Mahler, B.; Bouet, C.; Abecassis, B.; Xu, X. Z.; Dubertret, B. Optimized synthesis of CdTe nanoplatelets and photoresponse of CdTe nanoplatelets films. Chem. Mat. 2013, 25, 2455–2462.

    Article  CAS  Google Scholar 

  85. Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knüsel, P. N.; Kress, S. J. P.; Prins, F.; Erwin, S. C.; Norris, D. J. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017, 16, 743–748.

    CAS  Google Scholar 

  86. Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982.

    Article  CAS  Google Scholar 

  87. Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 2012, 134, 18591–18598.

    Article  CAS  Google Scholar 

  88. Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. Spectroscopy of single CdSe nanoplatelets. ACS Nano 2012, 6, 6751–6758.

    Article  CAS  Google Scholar 

  89. Pidgeon, C. R.; Brown, R. N. Interband magneto-absorption and faraday rotation in InSb. Phys. Rev. 1966, 146, 575–583.

    Article  CAS  Google Scholar 

  90. Shinada, M.; Sugano, S. Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption. J. Phys. Soc. Jpn. 1966, 21, 1936–1946.

    CAS  Google Scholar 

  91. Schmitt-Rink, S.; Chemla, D. S.; Miller, D. A. B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 1985, 32, 6601–6609.

    Article  CAS  Google Scholar 

  92. Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. Jetp Lett. 1979, 29, 658–661.

    Google Scholar 

  93. Achtstein, A. W.; Schliwa, A.; Prudnikau, A.; Hardzei, M.; Artemyev, M. V.; Thomsen, C.; Woggon, U. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 2012, 12, 3151–3157.

    Article  CAS  Google Scholar 

  94. Benchamekh, R.; Gippius, N. A.; Even, J.; Nestoklon, M. O.; Jancu, J. M.; Ithurria, S.; Dubertret, B.; Efros, A. L.; Voisin, P. Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe. Phys. Rev. B 2014, 89, 035307.

    Article  CAS  Google Scholar 

  95. Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.

    Article  CAS  Google Scholar 

  96. Brus, L. Size, dimensionality, and strong electron correlation in nanoscience. Acc. Chem. Res. 2014, 47, 2951–2959.

    Article  CAS  Google Scholar 

  97. Shabaev, A.; Efros, A. L. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett. 2004, 4, 1821–1825.

    Article  CAS  Google Scholar 

  98. Chernikov, A.; Ruppert, C.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics 2015, 9, 466–470.

    Article  CAS  Google Scholar 

  99. Hill, H. M.; Rigosi, A. F.; Roquelet, C.; Chernikov, A.; Berkelbach, T. C.; Reichman, D. R.; Hybertsen, M. S.; Brus, L. E.; Heinz, T. F. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 2015, 15, 2992–2997.

    Article  CAS  Google Scholar 

  100. Li, J.; Luo, L. H.; Huang, H. W.; Ma, C.; Ye, Z. Z.; Zeng, J.; He, H. P. 2D behaviors of excitons in cesium lead halide perovskite nanoplatelets. J. Phys. Chem. Lett. 2017, 8, 1161–1168.

    Article  CAS  Google Scholar 

  101. Wu, K. F.; Song, N. H.; Liu, Z.; Zhu, H. M.; Rodríguez-Córdoba, W.; Lian, T. Q. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes. J. Phys. Chem. A 2013, 117, 7561–7570.

    Article  CAS  Google Scholar 

  102. Wu, K. F.; Du, Y. L.; Tang, H.; Chen, Z. Y.; Lian, T. Q. Efficient extraction of trapped holes from colloidal CdS nanorods. J. Am. Chem. Soc. 2015, 137, 10224–10230.

    Article  CAS  Google Scholar 

  103. Li, Q. Y.; Lian, T. Q. Area-and thickness-dependent biexciton Auger recombination in colloidal CdSe nanoplatelets: Breaking the “universal volume scaling law”. Nano Lett. 2017, 17, 3152–3158.

    Article  CAS  Google Scholar 

  104. Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 2000, 104, 6112–6123.

    Article  CAS  Google Scholar 

  105. Klimov, V.; Bolivar, P. H.; Kurz, H. Ultrafast carrier dynamics in semiconductor quantum dots. Phys. Rev. B 1996, 53, 1463–1467.

    Article  CAS  Google Scholar 

  106. Hunsche, S.; Dekorsy, T.; Klimov, V.; Kurz, H. Ultrafast dynamics of carrier-induced absorption changes in highlyexcited CdSe nanocrystals. Appl. Phys. B 1996, 62, 3–10.

    Article  Google Scholar 

  107. Klimov, V. I.; Schwarz, C. J.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Ultrafast dynamics of inter-and intraband transitions in semiconductor nanocrystals: Implications for quantum-dot lasers. Phys. Rev. B 1999, 60, R2177–R2180.

    Article  CAS  Google Scholar 

  108. Diroll, B. T.; Fedin, I.; Darancet, P.; Talapin, D. V.; Schaller, R. D. Surface-area-dependent electron transfer between isoenergetic 2D quantum wells and a molecular acceptor. J. Am. Chem. Soc. 2016, 138, 11109–11112.

    Article  CAS  Google Scholar 

  109. Cassette, E.; Pensack, R. D.; Mahler, B.; Scholes, G. D. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nat. Commun. 2015, 6, 6086.

    Article  CAS  Google Scholar 

  110. Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular Auger recombination of electron-hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

    Article  CAS  Google Scholar 

  111. Kumagai, M.; Takagahara, T. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Phys. Rev. B 1989, 40, 12359–12381.

    Article  CAS  Google Scholar 

  112. Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 2013, 88, 045318.

    Article  CAS  Google Scholar 

  113. Jena, D.; Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 2007, 98, 136805.

    Article  CAS  Google Scholar 

  114. Okuhata, T.; Tamai, N. Face-dependent electron transfer in CdSe nanoplatelet–methyl viologen complexes. J. Phys. Chem. C 2016, 120, 17052–17059.

    Article  CAS  Google Scholar 

  115. Kunneman, L. T.; Schins, J. M.; Pedetti, S.; Heuclin, H.; Grozema, F. C.; Houtepen, A. J.; Dubertret, B.; Siebbeles, L. D. A. Nature and decay pathways of photoexcited states in CdSe and CdSe/CdS nanoplatelets. Nano Lett. 2014, 14, 7039–7045.

    Article  CAS  Google Scholar 

  116. Dong, S.; Pal, S.; Lian, J.; Chan, Y.; Prezhdo, O. V.; Loh, Z.-H. Sub-picosecond Auger-mediated hole-trapping dynamics in colloidal CdSe/CdS core/shell nanoplatelets. ACS Nano 2016, 10, 9370–9378.

    Article  CAS  Google Scholar 

  117. Pan, A. L.; Liu, D.; Liu, R. B.; Wang, F. F.; Zhu, X.; Zou, B. S. Optical waveguide through CdS nanoribbons. Small 2005, 1, 980–983.

    Article  CAS  Google Scholar 

  118. Chai, Z. G.; Zeng, T.-T.; Li, Q.; Lu, L.-Q.; Xiao, W.-J.; Xu, D. S. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. J. Am. Chem. Soc. 2016, 138, 10128–10131.

    Article  CAS  Google Scholar 

  119. Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrovic, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.

    Article  CAS  Google Scholar 

  120. Kalisman, P.; Nakibli, Y.; Amirav, L. Perfect photonto-hydrogen conversion efficiency. Nano Lett. 2016, 16, 1776–1781.

    Article  CAS  Google Scholar 

  121. Berr, M. J.; Schweinberger, F. F.; Döblinger, M.; Sanwald, K. E.; Wolff, C.; Breimeier, J.; Crampton, A. S.; Ridge, C. J.; Tschurl, M.; Heiz, U. et al. Size-selected subnanometer cluster catalysts on semiconductor nanocrystal films for atomic scale insight into photocatalysis. Nano Lett. 2012, 12, 5903–5906.

    Article  CAS  Google Scholar 

  122. Khon, E.; Lambright, K.; Khnayzer, R. S.; Moroz, P.; Perera, D.; Butaeva, E.; Lambright, S.; Castellano, F. N.; Zamkov, M. Improving the catalytic activity of semiconductor nanocrystals through selective domain etching. Nano Lett. 2013, 13, 2016–2023.

    Article  CAS  Google Scholar 

  123. Tongying, P.; Plashnitsa, V. V.; Petchsang, N.; Vietmeyer, F.; Ferraudi, G. J.; Krylova, G.; Kuno, M. Photocatalytic hydrogen generation efficiencies in one-dimensional CdSe heterostructures. J. Phys. Chem. Lett. 2012, 3, 3234–3240.

    Article  CAS  Google Scholar 

  124. Elmalem, E.; Saunders, A. E.; Costi, R.; Salant, A.; Banin, U. Growth of photocatalytic CdSe–Pt nanorods and nanonets. Adv. Mater. 2008, 20, 4312–4317.

    Article  CAS  Google Scholar 

  125. Naskar, S.; Lübkemann, F.; Hamid, S.; Freytag, A.; Wolf, A.; Koch, J.; Ivanova, I.; Pfnür, H.; Dorfs, D.; Bahnemann, D. W. et al. Synthesis of ternary and quaternary Au and Pt decorated CdSe/CdS heteronanoplatelets with controllable morphology. Adv. Funct. Mater. 2017, 27, 1604685.

    Article  CAS  Google Scholar 

  126. Nakibli, Y.; Kalisman, P.; Amirav, L. Less is more: The case of metal cocatalysts. J. Phys. Chem. Lett. 2015, 6, 2265–2268.

    Article  CAS  Google Scholar 

  127. Matsumoto, H.; Sakata, T.; Mori, H.; Yoneyama, H. Preparation of monodisperse CdS nanocrystals by size selective photocorrosion. J. Phys. Chem. 1996, 100, 13781–13785.

    Article  CAS  Google Scholar 

  128. Zhang, L. X.; Liu, Q. L.; Aoki, T.; Crozier, P. A. Structural evolution during photocorrosion of Ni/NiO core/shell cocatalyst on TiO2. J. Phys. Chem. C 2015, 119, 7207–7214.

    Article  CAS  Google Scholar 

  129. Zhu, X. Y.; Monahan, N. R.; Gong, Z. Z.; Zhu, H. M.; Williams, K.; Nelson, C. A. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Solar Photochemistry Program under Award Number (No. DE-FG02-12ER16347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianquan Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Lian, T. Exciton dissociation dynamics and light-driven H2 generation in colloidal 2D cadmium chalcogenide nanoplatelet heterostructures. Nano Res. 11, 3031–3049 (2018). https://doi.org/10.1007/s12274-018-2024-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2024-x

Keywords

Navigation