Skip to main content
Log in

Insights into the efficiency and stability of Cu-based nanowires for electrocatalytic oxygen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Copper oxide nanowires with varying oxidation states are prepared and their activity for water oxidation is studied. The nanowires with a CuO phase are found to be the most active, and their degree of crystallinity is important in achieving efficient water oxidation. For the crystalline CuO nanowires in a weakly basic Na2CO3 electrolyte, a Tafel slope of 41 mV/decade, an overpotential of approximately 500 mV at ~ 10 mA/cm2 (without compensation for the solution resistance), and a faradaic efficiency of nearly 100% are obtained. This electrode maintains a stable current for over 15 h. The low overpotential of 500 mV at 10 mA/cm2, small Tafel slope, long-term stability, and low cost make CuO one of the most promising catalysts for water oxidation. Moreover, the evolution of the CuO nanowire morphology over time is studied by electron microscopy, revealing that the diffusion of Cu ions from the interior of the nanowires to their surface causes the aggregation of individual nanowires over time. However, despite this aggregation, the current density remains nearly constant, because the total electrochemically active surface area of CuO does not change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, J.; Si, Z. C.; Chen, L.; Wu, X. D.; Weng, D. Selective catalytic reduction of NOx by ammonia over phosphate-con-taining Ce0.75Zr0.25O2 solids. Appl. Catal. B: Environ. 2015, 163, 223–232.

    Article  Google Scholar 

  2. Mamaca, N.; Mayousse, E.; Arrii-Clacens, S.; Napporn, T. W.; Servat, K.; Guillet, N.; Kokoh, K. B. Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Appl. Catal. B: Environ. 2012, 111–112, 376–380.

    Article  Google Scholar 

  3. da Silva, G. C.; Perini, N.; Ticianelli, E. A. Effect of temperature on the activities and stabilities of hydrothermally prepared IrOx nanocatalyst layers for the oxygen evolution reaction. Appl. Catal. B: Environ. 2017, 218, 287–297.

    Article  Google Scholar 

  4. Heo, I.; Wiebenga, M. H.; Gaudet, J. R.; Nam, I. S.; Li, W.; Kim, C. H. Ultra low temperature CO and HC oxidation over Cu-based mixed oxides for future automotive applications. Appl. Catal. B: Environ. 2014, 160–161, 365–373.

    Article  Google Scholar 

  5. Ng, J. W. D.; García-Melchor, M.; Bajdich, M.; Chakthranont, P.; Kirk, C.; Vojvodic, A.; Jaramillo, T. F. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 2016, 1, 16053.

    Article  Google Scholar 

  6. Zhong, M.; Hisatomi, T.; Kuang, Y. B.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q. X.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M. et al. Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 2015, 137, 5053–5060.

    Article  Google Scholar 

  7. Cao, Q.; Yu, J.; Yuan, K. P.; Zhong, M.; Delaunay, J. J. Facile and large-area preparation of porous Ag3PO4 photoanodes for enhanced photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 2017, 9, 19507–19512.

    Article  Google Scholar 

  8. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

    Article  Google Scholar 

  9. Feng, J. X.; Ye, S. H.; Xu, H.; Tong, Y. X.; Li, G. R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electroca-talysts for the oxygen evolution reaction. Adv. Mater. 2016, 28, 4698–4703.

    Article  Google Scholar 

  10. Du, J. L.; Chen, Z. F.; Ye, S. R.; Wiley, B. J.; Meyer, T. J. Copper as a robust and transparent electrocatalyst for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 2073–2080.

    Article  Google Scholar 

  11. Zhong, M.; Hisatomi, T.; Sasaki, Y.; Suzuki, S.; Teshima, K.; Nakabayashi, M.; Shibata, N.; Nishiyama, H.; Katayama, M.; Yamada, T. et al. Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation. Angew. Chem., Int. Ed. 2017, 56, 4739–4743.

    Article  Google Scholar 

  12. Peng, X.; Wang, L.; Hu, L. S.; Li, Y.; Gao, B.; Song, H.; Huang, C.; Zhang, X. M.; Fu, J. J.; Huo, K. F. et al. In situ segregation of cobalt nanoparticles on VN nanosheets via nitriding of Co2V2O7 nanosheets as efficient oxygen evolution reaction electrocatalysts. Nano Energy 2017, 34, 1–7.

    Article  Google Scholar 

  13. Chen, H. X.; Zhang, Q. B.; Han, X.; Cai, J. J.; Liu, M. L.; Yang, Y.; Zhang, K. L. 3D hierarchically porous zinc–nickel–cobalt oxide nanosheets grown on Ni foam as binder-free electrodes for electrochemical energy storage. J. Mater. Chem. A 2015, 3, 24022–24032.

    Article  Google Scholar 

  14. Lu, X. F.; Liao, P. Q.; Wang, J. W.; Wu, J. X.; Chen, X. W.; He, C. T.; Zhang, J. P.; Li, G. R.; Chen, X. M. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2016, 138, 8336–8339.

    Article  Google Scholar 

  15. Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694–3698.

    Article  Google Scholar 

  16. Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.

    Article  Google Scholar 

  17. Wang, H. Y.; Hsu, Y. Y.; Chen, R.; Chan, T. S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv. Mater. 2015, 5, 1500091.

    Google Scholar 

  18. Li, S. W.; Wang, Y. C.; Peng, S. J.; Zhang, L. J.; Al-Enizi, A. M.; Zhang, H.; Sun, X. H.; Zheng, G. F. Co–Ni-based nanotubes/ nanosheets as efficient water splitting electrocatalysts. Adv. Energy Mater. 2016, 6, 1501661.

    Article  Google Scholar 

  19. Zhan, T. R.; Liu, X. L.; Lu, S. S.; Hou, W. G. Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions. Appl. Catal. B: Environ. 2017, 205, 551–558.

    Article  Google Scholar 

  20. Li, L. L.; Zhang, L.; Ma, K. L.; Zou, W. X.; Cao, Y.; Xiong, Y.; Tang, C. J.; Dong, L. Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3. Appl. Catal. B: Environ. 2017, 207, 366–375.

    Article  Google Scholar 

  21. Xu, W.; Lan, R.; Du, D. W.; Humphreys, J.; Walker, M.; Wu, Z. C.; Wang, H. T.; Tao, S. W. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Appl. Catal. B: Environ. 2017, 218, 470–479.

    Article  Google Scholar 

  22. Berenguer, R.; La Rosa-Toro, A.; Quijada, C.; Morallón, E.Electrocatalytic oxidation of cyanide on copper-doped cobalt oxide electrodes. Appl. Catal. B: Environ. 2017, 207, 286–296.

    Article  Google Scholar 

  23. Cao, Q.; Che, R. C.; Chen, N. Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity. Appl. Catal. B: Environ. 2015, 162, 187–195.

    Article  Google Scholar 

  24. Ye, Z.; Giraudon, J. M.; Nuns, N.; Simon, P.; De Geyter, N.; Morent, R.; Lamonier, J. F. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation. Appl. Catal. B: Environ. 2018, 223, 154–166

    Article  Google Scholar 

  25. Liu, X. M.; Sui, Y. M.; Yang, X. Y.; Wei, Y. J.; Zou, B. Cu nanowires with clean surfaces: Synthesis and enhanced electrocatalytic activity. ACS Appl. Mater. Interfaces 2016, 8, 26886–26894.

    Article  Google Scholar 

  26. Wang, G. X.; Sui, Y. M.; Zhang, M. N.; Xu, M.; Zeng, Q. X.; Liu, C.; Liu, X. M.; Du, F.; Zou, B. One-pot synthesis of uniform Cu2O–CuO–TiO2 hollow nanocages with highly stable lithium storage properties. J. Mater. Chem. A 2017, 5, 18577–18584.

    Article  Google Scholar 

  27. Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Grätzel, M. Ultrathin films on copper(I) oxide water splitting photocathodes: A study on performance and stability. Energy Environ. Sci. 2012, 5, 8673–8681.

    Article  Google Scholar 

  28. Luo, J. S.; Steier, L.; Son, M. K.; Schreier, M.; Mayer, M. T.; Grätzel, M. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 2016, 16, 1848–1857.

    Article  Google Scholar 

  29. Li, C. L.; Hisatomi, T.; Watanabe, O.; Nakabayashi, M.; Shibata, N.; Domen, K.; Delaunay, J. J. Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy Environ. Sci. 2015, 8, 1493–1500.

    Article  Google Scholar 

  30. Barnett, S. M.; Goldberg, K. I.; Mayer, J. M. A soluble copper–bipyridine water-oxidation electrocatalyst. Nat. Chem. 2012, 4, 498–502.

    Article  Google Scholar 

  31. Chen, Z. F.; Meyer, T. J. Copper(II) catalysis of water oxidation. Angew. Chem., Int. Ed. 2013, 52, 700–703.

    Article  Google Scholar 

  32. Yu, F. S.; Li, F.; Zhang, B. B.; Li, H.; Sun, L. C. Efficient electrocatalytic water oxidation by a copper oxide thin film in borate buffer. ACS Catal. 2015, 5, 627–630.

    Article  Google Scholar 

  33. Hou, C. C.; Fu, W. F.; Chen, Y. Self-supported Cu-based nanowire arrays as noble-metal-free electrocatalysts for oxygen evolution. ChemSusChem 2016, 9, 2069–2073.

    Article  Google Scholar 

  34. Zhang, W.; Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv. Mater. 2003, 15, 822–825.

    Article  Google Scholar 

  35. Reichardt, W.; Gompf, F.; Aïn, M.; Wanklyn, B. M. Lattice dynamics of cupric oxide. Z. Phys. B Condens. Matter 1990, 81, 19–24.

    Article  Google Scholar 

  36. Xu, J. F.; Ji, W.; Shen, Z. X.; Li, W. S.; Tang, S. H.; Ye, X. R.; Jia, D. Z.; Xin, X. Q. Raman spectra of CuO nanocrystals. J. Raman Spectrosc. 1999, 30, 413–415.

    Article  Google Scholar 

  37. Deng, Y. L.; Handoko, A. D.; Du, Y. H.; Xi, S. B.; Yeo, B. S. In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of CuIII oxides as catalytically active species. ACS Catal. 2016, 6, 2473–2481.

    Article  Google Scholar 

  38. Reydellet, J.; Balkanski, M.; Trivich, D. Light scattering and infrared absorption in cuprous oxide. Phys. Status Solidi (B) 1972, 52, 175–185.

    Article  Google Scholar 

  39. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Eden Prairie, MN: Physical Electronics, 1995.

    Google Scholar 

  40. Li, C. L.; Li, Y. B.; Delaunay, J. J. A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells. ACS Appl. Mater. Interfaces 2014, 6, 480–486.

    Article  Google Scholar 

  41. Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157.

    Article  Google Scholar 

  42. Pickrahn, K. L.; Park, S. W.; Gorlin, Y.; Lee, H. B. R.; Jaramillo, T. F.; Bent, S. F. Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions. Adv. Energy Mater. 2012, 2, 1269–1277.

    Article  Google Scholar 

  43. Mao, S.; Lu, G. H.; Chen, J. H. Three-dimensional graphene-based composites for energy applications. Nanoscale 2015, 7, 6924–6943.

    Article  Google Scholar 

  44. Brooker, M. H.; Bates, J. B. Raman and infrared spectral studies of anhydrous Li2CO3 and Na2CO3. J. Chem. Phys. 1971, 54, 4788–4796.

    Article  Google Scholar 

  45. Su, D. W.; Xie, X. Q.; Dou, S. X.; Wang, G. X. CuO single crystal with exposed {001} facets-A highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 2014, 4, 5753.

    Article  Google Scholar 

  46. Trasatti, S.; Petrii, O. A. Real surface area measurements in electrochemistry. Pure Appl. Chem. 1991, 63, 711–734.

    Article  Google Scholar 

Download references

Acknowledgements

The XRD and electron microscopy characterizations were conducted at the Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Part of this work was supported by JSPS KAKENHI Grant Number (17H03229), the JSPS Core-to-Core program (Advanced Research Networks type A), Japan (JSPS)-Korea (NRF) Bilateral program and Grants-in-Aids for Specially Promoted Research. The authors thank Prof. Yuichi Ikuhara of the University of Tokyo for his helpful discussion on electron microscopy data. The authors also thank Prof. Kazunari Domen and Prof. Takashi Hisatomi for assistance in determination of the faradaic efficiency. J.Y. thanks the support from China Scholarship Council (No. 201506210091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Delaunay.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Cao, Q., Feng, B. et al. Insights into the efficiency and stability of Cu-based nanowires for electrocatalytic oxygen evolution. Nano Res. 11, 4323–4332 (2018). https://doi.org/10.1007/s12274-018-2020-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2020-1

Keywords

Navigation