Skip to main content
Log in

Simultaneous elimination of cancer stem cells and bulk cancer cells by cationic-lipid-assisted nanoparticles for cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Convincing evidence indicates that the existence of cancer stem cells (CSCs) within malignant tumors is mostly responsible for the failure of chemotherapy. Therefore, instead of merely targeting bulk cancer cells, simultaneous elimination of both CSCs and bulk cancer cells is necessary to improve therapeutic outcomes. Herein, we designed cationic-lipid-assisted nanoparticles DTXLNPsiRNA for simultaneous encapsulation of the conventional chemotherapeutic agentdocetaxel (DTXL) and small interfering RNA (siRNA) targeting BMI-1 (siBMI-1). We confirmed that nanoparticles DTXLNPsiBMI-1 effectively deliver both therapeutic agents into CSCs and bulk cancer cells. The bulk cancer cells were effectively killed by the DTXL encapsulated in DTXLNPsiBMI-1. In breast CSCs, BMI-1 expression was significantly downregulated by DTXLNPsiBMI-1; consequently, the stemness was reduced and chemosensitivity of CSCs to DTXL was enhanced, resulting in the elimination of CSCs. Therefore, via DTXLNPsiBMI-1, the combination of siBMI-1 and DTXL completely inhibited tumor growth and prevented a relapse by synergistic killing of CSCs and bulk cancer cells in a murine model of an MDA-MB-231 orthotropic tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clevers, H. The cancer stem cell: Premises, promises and challenges. Nat. Med. 2011, 17, 313–319.

    Article  Google Scholar 

  2. Reya, T.; Morrison, S. J.; Clarke, M. F.; Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 2001, 414, 105–111.

    Article  Google Scholar 

  3. Creighton, C. J.; Li, X. X.; Landis, M.; Dixon, J. M.; Neumeister, V. M.; Sjolund, A.; Rimm, D. L.; Wong, H.; Rodriguez, A.; Herschkowitz, J. I. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA 2009, 106, 13820–13825.

    Article  Google Scholar 

  4. Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2, 48–58.

    Article  Google Scholar 

  5. Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005, 5, 275–284.

    Article  Google Scholar 

  6. Venezia, T. A.; Merchant, A. A.; Ramos, C. A.; Whitehouse, N. L.; Young, A. S.; Shaw, C. A.; Goodell, M. A. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2004, 2, e301.

    Article  Google Scholar 

  7. Li, X. X.; Lewis, M. T.; Huang, J.; Gutierrez, C.; Osborne, C. K.; Wu, M. F.; Hilsenbeck, S. G.; Pavlick, A.; Zhang, X. M.; Chamness, G. C. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 2008, 100, 672–679.

    Article  Google Scholar 

  8. Li, Y. Z.; Rogoff, H. A.; Keates, S.; Gao, Y.; Murikipudi, S.; Mikule, K.; Leggett, D.; Li, W.; Pardee, A. B.; Li, C. J. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc. Natl. Acad. Sci. USA 2015, 112, 1839–1844.

    Article  Google Scholar 

  9. Li, R. J.; Ying, X.; Zhang, Y.; Ju, R. J.; Wang, X. X.; Yao, H. J.; Men, Y.; Tian, W.; Yu, Y.; Zhang, L. et al. All-trans retinoic acid stealth liposomes prevent the relapse of breast cancer arising from the cancer stem cells. J. Control Release 2011, 149, 281–291.

    Article  Google Scholar 

  10. Song, Y. J.; Zhang, S. S.; Guo, X. L.; Sun, K.; Han, Z. P.; Li, R.; Zhao, Q. D.; Deng, W. J.; Xie, X. Q.; Zhang, J. W. et al. Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett. 2013, 339, 70–81.

    Article  Google Scholar 

  11. Viale, A.; De Franco, F.; Orleth, A.; Cambiaghi, V.; Giuliani, V.; Bossi, D.; Ronchini, C.; Ronzoni, S.; Muradore, I.; Monestiroli, S. et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 2009, 457, 51–56.

    Article  Google Scholar 

  12. McAuliffe, S. M., Morgan, S. L.; Wyant, G. A.; Tran, L. T.; Muto, K. W.; Chen, Y. S.; Chin, K. T.; Partridge, J. C.; Poole, B. B.; Cheng, K. H. et al. Targeting notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc. Natl. Acad. Sci. USA 2012, 109, E2939–E2948.

    Article  Google Scholar 

  13. van der Lugt, N. M.; Domen, J.; Linders, K.; van Roon, M.; Robanus-Maandag, E.; te Riele, H.; van der Valk, M.; Deschamps, J.; Sofroniew, M.; van Lohuizen, M. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 1994, 8, 757–769.

    Article  Google Scholar 

  14. Yu, T. X.; Chen, X.; Zhang, W.; Colon, D.; Shi, J. D.; Napier, D.; Rychahou, P.; Lu, W. G.; Lee, E. Y.; Weiss, H. L. et al. Regulation of the potential marker for intestinal cells, Bmi1, by β-catenin and the zinc finger protein KLF4: Implications for colon cancer. J. Biol. Chem. 2012, 287, 3760–3768.

    Article  Google Scholar 

  15. Lessard, J.; Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003, 423, 255–260.

    Article  Google Scholar 

  16. Szotek, P. P.; Pieretti-Vanmarcke, R.; Masiakos, P. T.; Dinulescu, D. M.; Connolly, D.; Foster, R.; Dombkowski, D.; Preffer, F.; MacLaughlin, D. T.; Donahoe, P. K. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc. Natl. Acad. Sci. USA 2006, 103, 11154–11159.

    Article  Google Scholar 

  17. Lukacs, R. U.; Memarzadeh, S.; Wu, H.; Witte, O. N. BMI-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 2010, 7, 682–693.

    Article  Google Scholar 

  18. Chiba, T.; Miyagi, S.; Saraya, A.; Aoki, R.; Seki, A.; Morita, Y.; Yonemitsu, Y.; Yokosuka, O.; Taniguchi, H.; Nakauchi, H. et al. The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res. 2008, 68, 7742–7749.

    Article  Google Scholar 

  19. Jin, M.; Zhang, T.; Liu, C.; Badeaux, M. A.; Liu, B. G.; Liu, R. F.; Jeter, C.; Chen, X.; Vlassov, A. V.; Tang, D. G. miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells. Cancer Res. 2014, 74, 4183–4195.

    Article  Google Scholar 

  20. Liu, J.; Cao, L.; Chen, J. C.; Song, S. W.; Lee, I. H.; Quijano, C.; Liu, H. J.; Keyvanfar, K.; Chen, H. Q.; Cao, L. Y. et al. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 2009, 459, 387–392.

    Article  Google Scholar 

  21. Wei, X. L.; Dou, X. W.; Bai, J. W.; Luo, X. R.; Qiu, S. Q.; Xi, D. D.; Huang, W. H.; Du, C. W.; Man, K.; Zhang, G. J. ERα inhibits epithelial-mesenchymal transition by suppressing Bmi1 in breast cancer. Oncotarget 2015, 6, 21704–21717.

    Google Scholar 

  22. Chen, D. M.; Wu, M. S.; Li, Y.; Chang, I.; Yuan, Q.; Ekimyan-Salvo, M.; Deng, P.; Yu, B.; Yu, Y. X.; Dong, J. Q. et al. Targeting BMI1+ cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma. Cell Stem Cell 2017, 20, 621–634.e6.

    Article  Google Scholar 

  23. Kreso, A.; van Galen, P.; Pedley, N. M.; Lima-Fernandes, E.; Frelin, C.; Davis, T.; Cao, L. X.; Baiazitov, R.; Du, W.; Sydorenko, N. et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 2014, 20, 29–36.

    Article  Google Scholar 

  24. Jackson, A. L.; Linsley, P. S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 2010, 9, 57–67.

    Article  Google Scholar 

  25. Davis, M. E.; Zuckerman, J. E.; Choi, C. H. J.; Seligson, D.; Tolcher, A.; Alabi, C. A.; Yen, Y.; Heidel, J. D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464, 1067–1070.

    Article  Google Scholar 

  26. Fire, A.; Xu, S. Q.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.; Mello, C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811.

    Article  Google Scholar 

  27. Zamore, P. D.; Tuschl, T.; Sharp, P. A.; Bartel, D. P. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101, 25–33.

    Article  Google Scholar 

  28. Hu, T. S.; Liu, S. R.; Breiter, D. R.; Wang, F.; Tang, Y.; Sun, S. H. Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res. 2008, 68, 6533–6540.

    Article  Google Scholar 

  29. Dominska, M.; Dykxhoorn, D. M. Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci. 2010, 123, 1183–1189.

    Article  Google Scholar 

  30. Layzer, J. M.; McCaffrey, A. P.; Tanner, A. K.; Huang, Z.; Kay, M. A.; Sullenger B. A. In vivo activity of nuclease-resistant siRNAs. RNA 2004, 10, 766–771.

    Article  Google Scholar 

  31. Judge, A. D.; Sood, V.; Shaw, J. R.; Fang, D.; McClintock, K.; MacLachlan, I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 2005, 23, 457–462.

    Article  Google Scholar 

  32. Chang, J. C.; Wooten, E. C.; Tsimelzon, A.; Hilsenbeck, S. G.; Gutierrez, M. C.; Tham, Y. L.; Kalidas, M.; Elledge, R.; Mohsin, S.; Osborne, C. K. et al. Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. J. Clin. Oncol. 2005, 23, 1169–1177.

    Article  Google Scholar 

  33. Galletti, E.; Magnani, M.; Renzulli, M. L.; Botta, M. Paclitaxel and docetaxel resistance: Molecular mechanisms and development of new generation taxanes. ChemMedChem 2007, 2, 920–942.

    Article  Google Scholar 

  34. Wang, H.-X.; Zuo, Z.-Q.; Du, J.-Z.; Wang, Y.-C.; Sun, R.; Cao, Z.-T.; Ye, X.-D.; Wang, J.-L.; Leong, K. W.; Wang, J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today 2016, 11, 133–144.

    Article  Google Scholar 

  35. Gao, Z. B.; Zhang, L.; Sun, Y. J. Nanotechnology applied to overcome tumor drug resistance. J. Control Release 2012, 162, 45–55.

    Article  Google Scholar 

  36. Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliver. Rev. 2011, 63, 131–135.

    Article  Google Scholar 

  37. Hobbs, S. K.; Monsky, W. L.; Yuan, F.; Roberts, W. G.; Griffith, L.; Torchilin, V. P.; Jain, R. K. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 1998, 95, 4607–4612.

    Article  Google Scholar 

  38. Yang, Z.; Gao, D.; Cao, Z.; Cheng, D.; Liu, J.; Shuai, X. T. Drug and gene co-delivery systems for cancer treatment. Biomater. Sci. 2015, 3, 1035–1049.

    Article  Google Scholar 

  39. Song, X. J.; Feng, L. Z.; Liang, C.; Gao, M.; Song, G. S.; Liu, Z. Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. Nano Res. 2017, 10, 1200–1212.

    Article  Google Scholar 

  40. Yang, C. B.; Chan, K. K.; Lin, W. J.; Soehartono, A. M.; Lin, G. M.; Toh, H.; Yoon, H. S.; Chen, C. K.; Yong K. T. Biodegradable nanocarriers for small interfering ribonucleic acid (siRNA) co-delivery strategy increase the chemosensitivity of pancreatic cancer cells to gemcitabine. Nano Res. 2017, 10, 3049–3067.

    Article  Google Scholar 

  41. Kutty, R. V., Tay, C. Y., Lim, C. S.; Feng S. S.; Leong, D. T. Anti-migratory and increased cytotoxic effects of novel dual drug-loaded complex hybrid micelles in triple negative breast cancer cells. Nano Res. 2015, 8, 2533–2547.

    Article  Google Scholar 

  42. Xu, C. N.; Tian, H. Y.; Wang, P.; Wang, Y. B.; Chen, X. S. The suppression of metastatic lung cancer by pulmonary admini-stration of polymer nanoparticles for co-delivery of doxorubicin and survivin siRNA. Biomater. Sci. 2016, 4, 1646–1654.

    Article  Google Scholar 

  43. Yang, X. Z.; Dou, S.; Sun, T. M.; Mao, C. Q.; Wang, H. X.; Wang, J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J. Control Release 2011, 156, 203–211.

    Article  Google Scholar 

  44. Zuo, Z. Q.; Chen, K. G.; Yu, X. Y.; Zhao, G.; Shen, S.; Cao, Z. T.; Luo, Y. L.; Wang, Y. C.; Wang, J. Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials 2016, 82, 48–59.

    Article  Google Scholar 

  45. Xu, C.-F.; Liu, Y.; Shen, S.; Zhu, Y.-H.; Wang, J. Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy. Biomaterials 2015, 51, 1–11.

    Article  Google Scholar 

  46. Sun, R.; Shen, S.; Zhang, Y.-J.; Xu, C.-F.; Cao, Z.-T.; Wen, L.-P.; Wang, J. Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials 2016, 103, 44–55.

    Article  Google Scholar 

  47. Yu, F. Y.; Yao, H. R.; Zhu, P. C.; Zhang, X. Q.; Pan, Q. H.; Gong, C.; Huang, Y. J.; Hu, X. Q.; Su, F. X.; Lieberman, J. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007, 131, 1109–1123.

    Article  Google Scholar 

  48. Chou, T. C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446.

    Article  Google Scholar 

  49. Ginestier, C.; Hur, M. H.; Charafe-Jauffret, E.; Monville, F.; Dutcher, J.; Brown, M.; Jacquemier, J.; Viens, P.; Kleer, C. G.; Liu, S. L. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007, 1, 555–567.

    Article  Google Scholar 

  50. Douville, J.; Beaulieu, R.; Balicki, D. ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev. 2009, 18, 17–26.

    Article  Google Scholar 

  51. Ma, F.; Li, H. H.; Li, Y. Q.; Ding, X. Y.; Wang, H. J.; Fan, Y.; Lin, C.; Qian, H. L.; Xu, B. H. Aldehyde dehydrogenase 1 (ALDH1) expression is an independent prognostic factor in triple negative breast cancer (TNBC). Medicine 2017, 96, e6561.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key R&D Program of China (No. 2017YFA0205600), the National Basic Research Program of China (No. 2015CB932100), the National Natural Science Foundation of China (Nos. 51390482, 51633008, and 31470965), National Postdoctoral Program for Innovative Talents (No. BX201700080) and China Postdoctoral Science Foundation (No. 2017M622676).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianzhu Yang or Jun Wang.

Electronic supplementary material

12274_2018_2007_MOESM1_ESM.pdf

Simultaneous elimination of cancer stem cells and bulk cancer cells by cationic-lipid-assisted nanoparticles for cancer therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Shen, S., Zhao, G. et al. Simultaneous elimination of cancer stem cells and bulk cancer cells by cationic-lipid-assisted nanoparticles for cancer therapy. Nano Res. 11, 4183–4198 (2018). https://doi.org/10.1007/s12274-018-2007-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2007-y

Keywords

Navigation